Smoothing and growth bound of periodic generalized Korteweg–De Vries equation

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Seungly Oh, A. Stefanov
{"title":"Smoothing and growth bound of periodic generalized Korteweg–De Vries equation","authors":"Seungly Oh, A. Stefanov","doi":"10.1142/s0219891621500260","DOIUrl":null,"url":null,"abstract":"For generalized Korteweg–De Vries (KdV) models with polynomial nonlinearity, we establish a local smoothing property in [Formula: see text] for [Formula: see text]. Such smoothing effect persists globally, provided that the [Formula: see text] norm does not blow up in finite time. More specifically, we show that a translate of the nonlinear part of the solution gains [Formula: see text] derivatives for [Formula: see text]. Following a new simple method, which is of independent interest, we establish that, for [Formula: see text], [Formula: see text] norm of a solution grows at most by [Formula: see text] if [Formula: see text] norm is a priori controlled.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891621500260","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

For generalized Korteweg–De Vries (KdV) models with polynomial nonlinearity, we establish a local smoothing property in [Formula: see text] for [Formula: see text]. Such smoothing effect persists globally, provided that the [Formula: see text] norm does not blow up in finite time. More specifically, we show that a translate of the nonlinear part of the solution gains [Formula: see text] derivatives for [Formula: see text]. Following a new simple method, which is of independent interest, we establish that, for [Formula: see text], [Formula: see text] norm of a solution grows at most by [Formula: see text] if [Formula: see text] norm is a priori controlled.
周期广义Korteweg-De Vries方程的平滑和生长界
对于具有多项式非线性的广义Korteweg–De Vries(KdV)模型,我们在[公式:参见文本]中为[公式:见文本]建立了局部平滑特性。这种平滑效应在全球范围内持续存在,前提是[公式:见正文]范数不会在有限时间内爆炸。更具体地说,我们证明了解的非线性部分的平移获得了[公式:见文本]的导数。根据一个独立感兴趣的新的简单方法,我们确定,对于[Formula:see-text],如果[Formula:see-text]范数是先验控制的,则解的[Formula:see-text]norm最多增长[Formulas:see-text]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hyperbolic Differential Equations
Journal of Hyperbolic Differential Equations 数学-物理:数学物理
CiteScore
1.10
自引率
0.00%
发文量
15
审稿时长
24 months
期刊介绍: This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in: Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions. Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc. Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations. Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc. General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations. Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信