A Parametric Functional Equation Originating from Number Theory

IF 0.4 Q4 MATHEMATICS
A. Mouzoun, D. Zeglami, Y. Aissi
{"title":"A Parametric Functional Equation Originating from Number Theory","authors":"A. Mouzoun, D. Zeglami, Y. Aissi","doi":"10.2478/amsil-2022-0001","DOIUrl":null,"url":null,"abstract":"Abstract Let S be a semigroup and α, β ∈ ℝ. The purpose of this paper is to determine the general solution f : ℝ2 → S of the following parametric functional equation f(x1+x2+αy1y2,x1y2+x2y1+βy1y2)=f(x1,y1)f(x2,y2), f\\left( {{x_1} + {x_2} + \\alpha {y_1}{y_2},{x_1}{y_2} + {x_2}{y_1} + \\beta {y_1}{y_2}} \\right) = f\\left( {{x_1},{y_1}} \\right)f\\left( {{x_2},{y_2}} \\right), for all (x1, y1), (x2, y2) ∈ ℝ2, that generalizes some functional equations arising from number theory and is connected with the characterizations of the determinant of matrices.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"71 - 91"},"PeriodicalIF":0.4000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let S be a semigroup and α, β ∈ ℝ. The purpose of this paper is to determine the general solution f : ℝ2 → S of the following parametric functional equation f(x1+x2+αy1y2,x1y2+x2y1+βy1y2)=f(x1,y1)f(x2,y2), f\left( {{x_1} + {x_2} + \alpha {y_1}{y_2},{x_1}{y_2} + {x_2}{y_1} + \beta {y_1}{y_2}} \right) = f\left( {{x_1},{y_1}} \right)f\left( {{x_2},{y_2}} \right), for all (x1, y1), (x2, y2) ∈ ℝ2, that generalizes some functional equations arising from number theory and is connected with the characterizations of the determinant of matrices.
一个源于数论的参数函数方程
设S是半群,且α,β∈ℝ. 本文的目的是确定f的一般解:ℝ2.→ 下列参数函数方程f(x1+x2+αy1y2,x1y2+x2y1+βy1y2)的S=f(x1,y1)f(x2,y2(x2,y2)∈ℝ2,推广了数论中的一些函数方程,并与矩阵行列式的性质有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信