On the Performance of the Extended EWMA Control Chart for Monitoring Process Mean Based on Autocorrelated Data

Q2 Engineering
Kotchaporn Karoon, Y. Areepong, S. Sukparungsee
{"title":"On the Performance of the Extended EWMA Control Chart for Monitoring Process Mean Based on Autocorrelated Data","authors":"Kotchaporn Karoon, Y. Areepong, S. Sukparungsee","doi":"10.14416/j.asep.2023.01.004","DOIUrl":null,"url":null,"abstract":"The extended exponentially weighted moving average (EEWMA) control chart is an instrument for detection. It can quickly identify small shifts in the process. The benchmark for the control chart's performance is the average run length (ARL). In this paper, we present the efficiency of the EEWMA control chart to detect tiny shifts when the observations are autocorrelated with exponential residuals through the explicit formulas of the ARL. The accuracy of the solution was verified with the numerical integral equation (NIE) method. After that, the ARL effectiveness of the ARL on the EEWMA control chart was expanded to compare with the traditional EWMA control chart. Finally, using two real datasets that indicate the percentages of internet users using Windows 7 and iOS, the applicability of the offered method is shown. Our findings support the notion that the EEWMA control chart performs better when using autocorrelated data to track tiny changes.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2023.01.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The extended exponentially weighted moving average (EEWMA) control chart is an instrument for detection. It can quickly identify small shifts in the process. The benchmark for the control chart's performance is the average run length (ARL). In this paper, we present the efficiency of the EEWMA control chart to detect tiny shifts when the observations are autocorrelated with exponential residuals through the explicit formulas of the ARL. The accuracy of the solution was verified with the numerical integral equation (NIE) method. After that, the ARL effectiveness of the ARL on the EEWMA control chart was expanded to compare with the traditional EWMA control chart. Finally, using two real datasets that indicate the percentages of internet users using Windows 7 and iOS, the applicability of the offered method is shown. Our findings support the notion that the EEWMA control chart performs better when using autocorrelated data to track tiny changes.
基于自相关数据的过程均值监测扩展EWMA控制图性能研究
扩展指数加权移动平均(EEWMA)控制图是一种检测工具。它可以快速识别过程中的微小变化。控制图性能的基准是平均运行长度(ARL)。在本文中,我们通过ARL的显式公式,给出了当观测值与指数残差自相关时,EEWMA控制图检测微小位移的效率。用数值积分方程(NIE)方法验证了解的准确性。之后,扩展了ARL在EEWMA控制图上的ARL有效性,以与传统的EWMA控制图进行比较。最后,使用两个真实的数据集,显示了使用Windows7和iOS的互联网用户的百分比,表明了所提供方法的适用性。我们的研究结果支持这样一种观点,即当使用自相关数据来跟踪微小变化时,EEWMA控制图表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信