Yunfeng Li, Yonghui Huang, Qingyue Chen, Feridoon Jalili, Kasper B. Olesen, J. G. Brask, Lauge F. Dyring, G. F. Pedersen, M. Shen
{"title":"Hybrid Digital Pre-Distortion for Active Phased Arrays Subject to Varied Power and Steering Angle","authors":"Yunfeng Li, Yonghui Huang, Qingyue Chen, Feridoon Jalili, Kasper B. Olesen, J. G. Brask, Lauge F. Dyring, G. F. Pedersen, M. Shen","doi":"10.1109/LMWC.2022.3172215","DOIUrl":null,"url":null,"abstract":"This letter proposes a memory polynomial (MPM)-aided deep neural network (DNN) digital pre-distortion (MaD-DPD) method for active phased arrays (APAs) subject to varied input power and steering angle. This has been challenging for traditional array linearization methods using either MPM or DNN, which rely on the in-phase and quadrature-phase (I/Q) signal as input and output to derive model parameters. In comparison, the proposed method actively incorporates MPM and DNNs to achieve linearization. The model uses only two varied APA state parameters (input power and steering angle) as input and the MPM coefficients as regression target, eliminating the need for model parameter updating. The MaD-DPD method is validated using a four-by-four antenna array at 28 GHz with 21 input power levels and a broad range of steering angles from −78° to 78°, improving up to 13.16% in error vector magnitude (EVM) and 18.21 dBc in adjacent channel leakage ratio (ACLR).","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1243-1246"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3172215","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter proposes a memory polynomial (MPM)-aided deep neural network (DNN) digital pre-distortion (MaD-DPD) method for active phased arrays (APAs) subject to varied input power and steering angle. This has been challenging for traditional array linearization methods using either MPM or DNN, which rely on the in-phase and quadrature-phase (I/Q) signal as input and output to derive model parameters. In comparison, the proposed method actively incorporates MPM and DNNs to achieve linearization. The model uses only two varied APA state parameters (input power and steering angle) as input and the MPM coefficients as regression target, eliminating the need for model parameter updating. The MaD-DPD method is validated using a four-by-four antenna array at 28 GHz with 21 input power levels and a broad range of steering angles from −78° to 78°, improving up to 13.16% in error vector magnitude (EVM) and 18.21 dBc in adjacent channel leakage ratio (ACLR).
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.