M. Konstantatou, W. Baker, Timothy Nugent, A. McRobie
{"title":"Grid-shell design and analysis via reciprocal discrete Airy stress functions","authors":"M. Konstantatou, W. Baker, Timothy Nugent, A. McRobie","doi":"10.1177/09560599221081004","DOIUrl":null,"url":null,"abstract":"This research paper introduces a theoretical framework for the design and analysis of compression-and-tension grid-shells in static equilibrium where the states of self-stress function as design freedoms. This is based on a synthesis of reciprocal discrete Airy stress functions in the context of graphic statics and the Force Density Method (FDM). Specifically, the former is a direct method for generating 2-dimensional global static equilibrium whereas the latter allows for its 3-dimensional implementation. As a result, creative design explorations can take place directly within the equilibrium space without the need for iterative convergence algorithms to obtain equilibrium. The use of reciprocal Airy stress functions in conjunction with the lower bound theorem gives insight and explicit control with regards to the states of self-stress as design and analysis freedoms which can define the structural form and its load path.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":"37 1","pages":"150 - 164"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09560599221081004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2
Abstract
This research paper introduces a theoretical framework for the design and analysis of compression-and-tension grid-shells in static equilibrium where the states of self-stress function as design freedoms. This is based on a synthesis of reciprocal discrete Airy stress functions in the context of graphic statics and the Force Density Method (FDM). Specifically, the former is a direct method for generating 2-dimensional global static equilibrium whereas the latter allows for its 3-dimensional implementation. As a result, creative design explorations can take place directly within the equilibrium space without the need for iterative convergence algorithms to obtain equilibrium. The use of reciprocal Airy stress functions in conjunction with the lower bound theorem gives insight and explicit control with regards to the states of self-stress as design and analysis freedoms which can define the structural form and its load path.
期刊介绍:
The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.