{"title":"Robust joint modelling of sparsely observed paired functional data","authors":"Huiya Zhou, Xiaomeng Yan, Lan Zhou","doi":"10.1002/cjs.11796","DOIUrl":null,"url":null,"abstract":"<p>A reduced-rank mixed-effects model is developed for robust modelling of sparsely observed paired functional data. In this model, the curves for each functional variable are summarized using a few functional principal components, and the association of the two functional variables is modelled through the association of the principal component scores. A multivariate-scale mixture of normal distributions is used to model the principal component scores and the measurement errors in order to handle outlying observations and achieve robust inference. The mean functions and principal component functions are modelled using splines, and roughness penalties are applied to avoid overfitting. An EM algorithm is developed for computation of model fitting and prediction. A simulation study shows that the proposed method outperforms an existing method, which is not designed for robust estimation. The effectiveness of the proposed method is illustrated through an application of fitting multiband light curves of Type Ia supernovae.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 3","pages":"734-754"},"PeriodicalIF":0.8000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11796","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11796","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
A reduced-rank mixed-effects model is developed for robust modelling of sparsely observed paired functional data. In this model, the curves for each functional variable are summarized using a few functional principal components, and the association of the two functional variables is modelled through the association of the principal component scores. A multivariate-scale mixture of normal distributions is used to model the principal component scores and the measurement errors in order to handle outlying observations and achieve robust inference. The mean functions and principal component functions are modelled using splines, and roughness penalties are applied to avoid overfitting. An EM algorithm is developed for computation of model fitting and prediction. A simulation study shows that the proposed method outperforms an existing method, which is not designed for robust estimation. The effectiveness of the proposed method is illustrated through an application of fitting multiband light curves of Type Ia supernovae.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.