Real dimension of the Lie algebra of S-skew-Hermitian matrices

IF 0.7 4区 数学 Q2 Mathematics
Jonathan Caalim, Yuuji Tanaka
{"title":"Real dimension of the Lie algebra of S-skew-Hermitian matrices","authors":"Jonathan Caalim, Yuuji Tanaka","doi":"10.13001/ela.2022.5443","DOIUrl":null,"url":null,"abstract":"Let $M_n(\\mathbb{C})$ be the set of $n\\times n$ matrices over the complex numbers. Let $S \\in M_n(\\mathbb{C})$. A matrix $A\\in M_n(\\mathbb{C})$ is said to be $S$-skew-Hermitian if $SA^*=-AS$ where $A^*$ is the conjugate transpose of $A$. The set $\\mathfrak{u}_S$ of all $S$-skew-Hermitian matrices is a Lie algebra. In this paper, we give a real dimension formula for $\\mathfrak{u}_S$ using the Jordan block decomposition of the cosquare $S(S^*)^{-1}$ of $S$ when $S$ is nonsingular.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.5443","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $M_n(\mathbb{C})$ be the set of $n\times n$ matrices over the complex numbers. Let $S \in M_n(\mathbb{C})$. A matrix $A\in M_n(\mathbb{C})$ is said to be $S$-skew-Hermitian if $SA^*=-AS$ where $A^*$ is the conjugate transpose of $A$. The set $\mathfrak{u}_S$ of all $S$-skew-Hermitian matrices is a Lie algebra. In this paper, we give a real dimension formula for $\mathfrak{u}_S$ using the Jordan block decomposition of the cosquare $S(S^*)^{-1}$ of $S$ when $S$ is nonsingular.
S-偏序矩阵李代数的实维数
设$M_n(\mathbb{C})$是在复数上的$n\乘以n$矩阵的集合。让$S \in M_n(\mathbb{C})$。一个矩阵$A\in M_n(\mathbb{C})$被称为$S$-斜厄米矩阵,如果$SA^*=-AS$,其中$A^*$是$A$的共轭转置。所有$S$-斜厄米矩阵的集合$\mathfrak{u}_S$是一个李代数。本文利用$S$的余方$S(S^*)^{-1}$的Jordan块分解,给出了$S$非奇异时$\mathfrak{u}_S$的实维公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信