{"title":"On Monte-Carlo methods in convex stochastic optimization","authors":"Daniel Bartl, S. Mendelson","doi":"10.1214/22-aap1781","DOIUrl":null,"url":null,"abstract":"We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form minx∈X E[F (x, ξ)], when the given data is a finite independent sample selected according to ξ. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a non-asymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, non-asymptotic results for the portfolio optimization problem.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1781","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8
Abstract
We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form minx∈X E[F (x, ξ)], when the given data is a finite independent sample selected according to ξ. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a non-asymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, non-asymptotic results for the portfolio optimization problem.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.