COMPARISON OF TIME AND TIME-FREQUENCY DOMAINS IMPULSIVE NOISE MITIGATION TECHNIQUES FOR POWER LINE COMMUNICATIONS

A. Mohammed, Maher K. Mahmood Al-Azawi
{"title":"COMPARISON OF TIME AND TIME-FREQUENCY DOMAINS IMPULSIVE NOISE MITIGATION TECHNIQUES FOR POWER LINE COMMUNICATIONS","authors":"A. Mohammed, Maher K. Mahmood Al-Azawi","doi":"10.31272/jeasd.27.1.6","DOIUrl":null,"url":null,"abstract":"Impulsive noise is one of the foremost situations in power line communications that degrades the performance of orthogonal frequency division multiplexing used for the power line communications channel. In this paper, a channel version of the broadband power line communications is assumed when evaluating the bit error rate performance. Three impulsive noise environments are assumed, namely heavily, moderately, and weakly disturbed. The well-known time domain mitigation techniques are tested first. These are clipping, blanking, and mixing clipping with blanking. The results of Matlab simulations show that these time-domain mitigation techniques don't significantly improve the bit error rate performance. A hybrid domain of time and frequency mitigation techniques are used to enhance the bit error rate performance. The Matlab simulation results show that this hybrid domain of time and frequency approach outperforms time domain nonlinearities and can largely improve the bit error rate performance. Signal-to-noise ratio gains of about 8 dB, 10 dB, and 10 dB are obtained for heavily, moderately, and weakly disturbed channels, respectively, using the domains of time and frequency mitigation technique at a bit error rate of when compared to the blanking time domain technique.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31272/jeasd.27.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Impulsive noise is one of the foremost situations in power line communications that degrades the performance of orthogonal frequency division multiplexing used for the power line communications channel. In this paper, a channel version of the broadband power line communications is assumed when evaluating the bit error rate performance. Three impulsive noise environments are assumed, namely heavily, moderately, and weakly disturbed. The well-known time domain mitigation techniques are tested first. These are clipping, blanking, and mixing clipping with blanking. The results of Matlab simulations show that these time-domain mitigation techniques don't significantly improve the bit error rate performance. A hybrid domain of time and frequency mitigation techniques are used to enhance the bit error rate performance. The Matlab simulation results show that this hybrid domain of time and frequency approach outperforms time domain nonlinearities and can largely improve the bit error rate performance. Signal-to-noise ratio gains of about 8 dB, 10 dB, and 10 dB are obtained for heavily, moderately, and weakly disturbed channels, respectively, using the domains of time and frequency mitigation technique at a bit error rate of when compared to the blanking time domain technique.
电力线通信时频域脉冲噪声抑制技术的比较
脉冲噪声是电力线通信中最重要的情况之一,它降低了用于电力线通信信道的正交频分复用的性能。在本文中,在评估误码率性能时,假设宽带电力线通信的信道版本。假设了三种脉冲噪声环境,即重度、中度和弱扰动。首先测试了众所周知的时域缓解技术。这些是剪裁、消隐以及将剪裁与消隐混合。Matlab仿真结果表明,这些时域抑制技术并没有显著提高误码率性能。使用时间和频率的混合域缓解技术来增强误码率性能。Matlab仿真结果表明,这种时频域混合方法优于时域非线性方法,可以大大提高误码率性能。在与消隐时域技术相比的误码率下,使用时域和频率减轻技术,对于严重、中度和弱干扰信道,分别获得约8dB、10dB和10dB的信噪比增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
74
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信