{"title":"COMPARISON OF TIME AND TIME-FREQUENCY DOMAINS IMPULSIVE NOISE MITIGATION TECHNIQUES FOR POWER LINE COMMUNICATIONS","authors":"A. Mohammed, Maher K. Mahmood Al-Azawi","doi":"10.31272/jeasd.27.1.6","DOIUrl":null,"url":null,"abstract":"Impulsive noise is one of the foremost situations in power line communications that degrades the performance of orthogonal frequency division multiplexing used for the power line communications channel. In this paper, a channel version of the broadband power line communications is assumed when evaluating the bit error rate performance. Three impulsive noise environments are assumed, namely heavily, moderately, and weakly disturbed. The well-known time domain mitigation techniques are tested first. These are clipping, blanking, and mixing clipping with blanking. The results of Matlab simulations show that these time-domain mitigation techniques don't significantly improve the bit error rate performance. A hybrid domain of time and frequency mitigation techniques are used to enhance the bit error rate performance. The Matlab simulation results show that this hybrid domain of time and frequency approach outperforms time domain nonlinearities and can largely improve the bit error rate performance. Signal-to-noise ratio gains of about 8 dB, 10 dB, and 10 dB are obtained for heavily, moderately, and weakly disturbed channels, respectively, using the domains of time and frequency mitigation technique at a bit error rate of when compared to the blanking time domain technique.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31272/jeasd.27.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Impulsive noise is one of the foremost situations in power line communications that degrades the performance of orthogonal frequency division multiplexing used for the power line communications channel. In this paper, a channel version of the broadband power line communications is assumed when evaluating the bit error rate performance. Three impulsive noise environments are assumed, namely heavily, moderately, and weakly disturbed. The well-known time domain mitigation techniques are tested first. These are clipping, blanking, and mixing clipping with blanking. The results of Matlab simulations show that these time-domain mitigation techniques don't significantly improve the bit error rate performance. A hybrid domain of time and frequency mitigation techniques are used to enhance the bit error rate performance. The Matlab simulation results show that this hybrid domain of time and frequency approach outperforms time domain nonlinearities and can largely improve the bit error rate performance. Signal-to-noise ratio gains of about 8 dB, 10 dB, and 10 dB are obtained for heavily, moderately, and weakly disturbed channels, respectively, using the domains of time and frequency mitigation technique at a bit error rate of when compared to the blanking time domain technique.