Direction and Stability of Hopf Bifurcation in a Delayed Solow Model with Labor Demand

IF 1.4 Q2 MATHEMATICS, APPLIED
S. ElFadily, A. Kaddar, K. Najib
{"title":"Direction and Stability of Hopf Bifurcation in a Delayed Solow Model with Labor Demand","authors":"S. ElFadily, A. Kaddar, K. Najib","doi":"10.1155/2019/7609828","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a delayed model of mutual interactions between the economically active population and the economic growth. The main purpose is to investigate the direction and stability of the bifurcating branch resulting from the increase of delay. By using a second order approximation of the center manifold, we compute the first Lyapunov coefficient for Hopf bifurcation points and we show that the system under consideration can undergo a supercritical or subcritical Hopf bifurcation and the bifurcating periodic solution is stable or unstable in a neighborhood of some bifurcation points, depending on the choice of parameters.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7609828","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/7609828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with a delayed model of mutual interactions between the economically active population and the economic growth. The main purpose is to investigate the direction and stability of the bifurcating branch resulting from the increase of delay. By using a second order approximation of the center manifold, we compute the first Lyapunov coefficient for Hopf bifurcation points and we show that the system under consideration can undergo a supercritical or subcritical Hopf bifurcation and the bifurcating periodic solution is stable or unstable in a neighborhood of some bifurcation points, depending on the choice of parameters.
考虑劳动力需求的延迟索洛模型Hopf分岔的方向与稳定性
本文研究了经济活动人口与经济增长之间相互作用的延迟模型。主要目的是研究由延迟增加引起的分叉分支的方向和稳定性。通过使用中心流形的二阶近似,我们计算了Hopf分岔点的第一李雅普诺夫系数,并证明了所考虑的系统可以经历超临界或亚临界Hopf分岔,并且根据参数的选择,分岔周期解在某些分岔点的邻域内是稳定的或不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信