Experimental Study of Coupled Torsional and Lateral Vibration of Vertical Rotor-to-Stator Contact in an Inviscid Fluid

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
D. F. Sozinando, B. X. Tchomeni, A. Alugongo
{"title":"Experimental Study of Coupled Torsional and Lateral Vibration of Vertical Rotor-to-Stator Contact in an Inviscid Fluid","authors":"D. F. Sozinando, B. X. Tchomeni, A. Alugongo","doi":"10.3390/mca28020044","DOIUrl":null,"url":null,"abstract":"Diagnosis of faults in a rotor system operating in a fluid is a complex task in the field of rotating machinery. In an ideal scenario, a forced shutdown due to rotor-stator contact failure would necessitate the replacement of the rotor or stator. However, factors such as time constraints, economic considerations, and the aging of infrastructure make it imprudent to abruptly shut down machinery that can still be safe to operate. The purpose of this paper is to present an experimental study that validates the theoretical results of the dynamic behavior and friction detection using the wavelet synchrosqueezing transformation (WSST) method for recurrent rotor-stator contacts in a fluid environment, as presented in a previous study. The investigation focused on the analysis of whirl orbits, shaft deflection, and fluctuation frequency during passage through critical speeds. The WSST method was used to decompose the dynamic responses of the rotor in the supercritical speed zone into several supercomponents. The variation of the high-frequency component was studied based on the fluctuation of the instantaneous frequency (IF) technique. Additionally, the fast Fourier transform (FFT) method, in conjunction with the WSST technique, was used to calculate the variation in the amplitude of high-order frequencies in the vibration signal spectrum. The experimental study revealed that the split in resonance caused by rubbing effects is reduced when the rotor and stator interact with an inviscid fluid. However, despite the effects of elasticity and fluid boundaries generating self-excitation at low frequencies and uneven motion due to stator clearance, the experimental results were consistent with the theoretical analysis, demonstrating the effectiveness of the contact detection method based on WSST.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnosis of faults in a rotor system operating in a fluid is a complex task in the field of rotating machinery. In an ideal scenario, a forced shutdown due to rotor-stator contact failure would necessitate the replacement of the rotor or stator. However, factors such as time constraints, economic considerations, and the aging of infrastructure make it imprudent to abruptly shut down machinery that can still be safe to operate. The purpose of this paper is to present an experimental study that validates the theoretical results of the dynamic behavior and friction detection using the wavelet synchrosqueezing transformation (WSST) method for recurrent rotor-stator contacts in a fluid environment, as presented in a previous study. The investigation focused on the analysis of whirl orbits, shaft deflection, and fluctuation frequency during passage through critical speeds. The WSST method was used to decompose the dynamic responses of the rotor in the supercritical speed zone into several supercomponents. The variation of the high-frequency component was studied based on the fluctuation of the instantaneous frequency (IF) technique. Additionally, the fast Fourier transform (FFT) method, in conjunction with the WSST technique, was used to calculate the variation in the amplitude of high-order frequencies in the vibration signal spectrum. The experimental study revealed that the split in resonance caused by rubbing effects is reduced when the rotor and stator interact with an inviscid fluid. However, despite the effects of elasticity and fluid boundaries generating self-excitation at low frequencies and uneven motion due to stator clearance, the experimental results were consistent with the theoretical analysis, demonstrating the effectiveness of the contact detection method based on WSST.
无粘流体中垂直转子-定子接触扭转和横向耦合振动的实验研究
在旋转机械领域,对在流体中运行的转子系统的故障进行诊断是一项复杂的任务。在理想情况下,由于转子-定子接触故障导致的强制停机将需要更换转子或定子。然而,由于时间限制、经济考虑和基础设施老化等因素,突然关闭仍然可以安全运行的机器是不明智的。本文的目的是提供一项实验研究,验证了先前研究中提出的流体环境中转子-定子反复接触的小波同步挤压变换(WSST)方法的动态行为和摩擦检测的理论结果。研究的重点是分析通过临界转速时的涡流轨道、轴偏转和波动频率。采用WSST方法将转子在超临界转速区的动力响应分解为几个超级分量。基于瞬时频率(IF)技术的波动,研究了高频分量的变化。此外,将快速傅立叶变换(FFT)方法与WSST技术相结合,用于计算振动信号频谱中高阶频率振幅的变化。实验研究表明,当转子和定子与无粘性流体相互作用时,由摩擦效应引起的共振分裂会减少。然而,尽管存在弹性和流体边界在低频下产生自激以及定子间隙引起的不均匀运动的影响,但实验结果与理论分析一致,证明了基于WSST的接触检测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信