{"title":"Analysis for the efficiency of additional dispersed reinforcement using coconut fiber for a concrete beam with traditional steel bar reinforcement","authors":"Peter Chongo, S. Shambina, Oliver Tembo","doi":"10.22363/1815-5235-2022-18-3-215-227","DOIUrl":null,"url":null,"abstract":"Concrete is widely used as a building material throughout the world. However, its use in building structures is limited due to its low tensile strength. This problem can be partially solved using steel bars reinforcement, as well as using dispersed reinforcement with various types of fibers. The authors propose the simultaneous traditional reinforcement of a concrete structure with steel bars with additional dispersed reinforcement with natural coconut fibers, relatively cheap and widely available in many countries in Africa, Asia and Latin America. The purpose of this study is to analyze the effectiveness of the proposed solution by comparing the required amount of steel reinforcement (by weight) for a beam made of traditional concrete and a similar beam with additional dispersed reinforcement with coconut fibers. Deflections and cracking in beams were investigated. The analysis was carried out using Autodesk Robot Structural Analysis Professional 2022 software. The results showed that a beam additionally reinforced with coconut fiber requires 11% less steel reinforcement (by weight) compared to a similar beam made of traditional reinforced concrete. In addition, the coconut fiber reinforced beam experienced 6% less deflection and significantly less stress cracking compared to a simple concrete beam. These results proved that the approach proposed in the work noticeably improves the performance of reinforced concrete in the structure, and also makes it possible to obtain significant savings in reinforcing steel.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2022-18-3-215-227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Concrete is widely used as a building material throughout the world. However, its use in building structures is limited due to its low tensile strength. This problem can be partially solved using steel bars reinforcement, as well as using dispersed reinforcement with various types of fibers. The authors propose the simultaneous traditional reinforcement of a concrete structure with steel bars with additional dispersed reinforcement with natural coconut fibers, relatively cheap and widely available in many countries in Africa, Asia and Latin America. The purpose of this study is to analyze the effectiveness of the proposed solution by comparing the required amount of steel reinforcement (by weight) for a beam made of traditional concrete and a similar beam with additional dispersed reinforcement with coconut fibers. Deflections and cracking in beams were investigated. The analysis was carried out using Autodesk Robot Structural Analysis Professional 2022 software. The results showed that a beam additionally reinforced with coconut fiber requires 11% less steel reinforcement (by weight) compared to a similar beam made of traditional reinforced concrete. In addition, the coconut fiber reinforced beam experienced 6% less deflection and significantly less stress cracking compared to a simple concrete beam. These results proved that the approach proposed in the work noticeably improves the performance of reinforced concrete in the structure, and also makes it possible to obtain significant savings in reinforcing steel.