Regression models of Pearson correlation coefficient

IF 0.7 Q3 STATISTICS & PROBABILITY
Abdisa G. Dufera, Tiantian Liu, Jin Xu
{"title":"Regression models of Pearson correlation coefficient","authors":"Abdisa G. Dufera, Tiantian Liu, Jin Xu","doi":"10.1080/24754269.2023.2164970","DOIUrl":null,"url":null,"abstract":"We propose two simple regression models of Pearson correlation coefficient of two normal responses or binary responses to assess the effect of covariates of interest. Likelihood-based inference is established to estimate the regression coefficients, upon which bootstrap-based method is used to test the significance of covariates of interest. Simulation studies show the effectiveness of the method in terms of type-I error control, power performance in moderate sample size and robustness with respect to model mis-specification. We illustrate the application of the proposed method to some real data concerning health measurements.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"97 - 106"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2023.2164970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

We propose two simple regression models of Pearson correlation coefficient of two normal responses or binary responses to assess the effect of covariates of interest. Likelihood-based inference is established to estimate the regression coefficients, upon which bootstrap-based method is used to test the significance of covariates of interest. Simulation studies show the effectiveness of the method in terms of type-I error control, power performance in moderate sample size and robustness with respect to model mis-specification. We illustrate the application of the proposed method to some real data concerning health measurements.
Pearson相关系数回归模型
我们提出了两个正态反应或二元反应的皮尔逊相关系数的简单回归模型,以评估感兴趣的协变量的影响。建立了基于似然的推断来估计回归系数,在此基础上,使用基于bootstrap的方法来测试感兴趣的协变量的显著性。仿真研究表明,该方法在I型误差控制、中等样本量下的功率性能以及对模型错误规范的鲁棒性方面是有效的。我们举例说明了所提出的方法在一些有关健康测量的真实数据中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信