On-Chip CMOS Self-Decoupling Battery Cell System for Security Protection

IF 1.7 Q2 Engineering
R. Muresan
{"title":"On-Chip CMOS Self-Decoupling Battery Cell System for Security Protection","authors":"R. Muresan","doi":"10.1109/CJECE.2019.2949934","DOIUrl":null,"url":null,"abstract":"This article presents an effective on-chip power analysis attack countermeasure based on a new CMOS self-decoupling battery cell system that uses a self-decoupling circuit. The self-decoupling circuit dynamically controls an on-chip virtual power supply point, <inline-formula> <tex-math notation=\"LaTeX\">$V_{\\mathrm {ddv}}$ </tex-math></inline-formula>, that can be used to power security-sensitive modules. The circuit automatically decouples an on-chip CMOS battery cell from powering a sensitive module when its voltage level reaches a designed minimum threshold level <inline-formula> <tex-math notation=\"LaTeX\">$V_{\\mathrm {dd-min}}$ </tex-math></inline-formula> and connects it for a very short charging cycle to the chip’s main voltage supply, <inline-formula> <tex-math notation=\"LaTeX\">$V_{\\mathrm {dd}}$ </tex-math></inline-formula>. The charging cycles for the experiments presented in this article are less than 10 ns and are designed to support the CMOS battery cell size and the minimum designed threshold voltage level <inline-formula> <tex-math notation=\"LaTeX\">$V_{\\mathrm {dd-min}}$ </tex-math></inline-formula>. Simulation results of test designs implemented in the 45-nm CMOS technology process show that the proposed countermeasure is efficient when used with battery cell sizes that can power the protected cryptographic module for more than ten data operation cycles before recharging. In addition, using the on-chip self-decoupling battery cell system allows for power consumption savings within the protected module of up to 43 % due to the dynamic voltage scaling generated at the virtual power supply point.","PeriodicalId":55287,"journal":{"name":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CJECE.2019.2949934","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CJECE.2019.2949934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

This article presents an effective on-chip power analysis attack countermeasure based on a new CMOS self-decoupling battery cell system that uses a self-decoupling circuit. The self-decoupling circuit dynamically controls an on-chip virtual power supply point, $V_{\mathrm {ddv}}$ , that can be used to power security-sensitive modules. The circuit automatically decouples an on-chip CMOS battery cell from powering a sensitive module when its voltage level reaches a designed minimum threshold level $V_{\mathrm {dd-min}}$ and connects it for a very short charging cycle to the chip’s main voltage supply, $V_{\mathrm {dd}}$ . The charging cycles for the experiments presented in this article are less than 10 ns and are designed to support the CMOS battery cell size and the minimum designed threshold voltage level $V_{\mathrm {dd-min}}$ . Simulation results of test designs implemented in the 45-nm CMOS technology process show that the proposed countermeasure is efficient when used with battery cell sizes that can power the protected cryptographic module for more than ten data operation cycles before recharging. In addition, using the on-chip self-decoupling battery cell system allows for power consumption savings within the protected module of up to 43 % due to the dynamic voltage scaling generated at the virtual power supply point.
用于安全保护的片上CMOS自解耦电池系统
本文提出了一种有效的基于自耦电路的CMOS自耦电芯系统的片上功率分析攻击对策。自解耦电路动态控制片上虚拟电源点$V_{\ mathm {ddv}}$,该电源点可用于为安全敏感模块供电。当敏感模块的电压水平达到设计的最小阈值水平$V_{\mathrm {dd-min}}$时,电路自动将片上CMOS电池单元从供电中解耦,并将其连接到芯片的主电压电源$V_{\mathrm {dd}}$上,进行非常短的充电周期。本文实验的充电周期小于10 ns,并且设计支持CMOS电池尺寸和最小设计阈值电压电平$V_{\ mathm {dd-min}}$。在45纳米CMOS工艺中实施的测试设计的仿真结果表明,当电池尺寸可以在充电前为受保护的加密模块供电超过10个数据操作周期时,所提出的对策是有效的。此外,由于在虚拟电源点产生的动态电压缩放,使用片上自去耦电池系统可以在受保护模块内节省高达43%的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
27
期刊介绍: The Canadian Journal of Electrical and Computer Engineering (ISSN-0840-8688), issued quarterly, has been publishing high-quality refereed scientific papers in all areas of electrical and computer engineering since 1976
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信