Enumeration of non-oriented maps via integrability

Q3 Mathematics
V. Bonzom, G. Chapuy, Maciej Dolkega
{"title":"Enumeration of non-oriented maps via integrability","authors":"V. Bonzom, G. Chapuy, Maciej Dolkega","doi":"10.5802/alco.268","DOIUrl":null,"url":null,"abstract":"In this note, we examine how the BKP structure of the generating series of several models of maps on non-oriented surfaces can be used to obtain explicit and/or efficient recurrence formulas for their enumeration according to the genus and size parameters. Using techniques already known in the orientable case (elimination of variables via Virasoro constraints or Tutte equations), we naturally obtain recurrence formulas with non-polynomial coefficients. This non-polynomiality reflects the presence of shifts of the charge parameter in the BKP equation. Nevertheless, we show that it is possible to obtain non-shifted versions, meaning pure ODEs for the associated generating functions, from which recurrence relations with polynomial coefficients can be extracted. We treat the cases of triangulations, general maps, and bipartite maps. These recurrences with polynomial coefficients are conceptually interesting but bigger to write than those with non-polynomial coefficients. However they are relatively nice-looking in the case of one-face maps. In particular we show that Ledoux's recurrence for non-oriented one-face maps can be recovered in this way, and we obtain the analogous statement for the (bivariate) bipartite case.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

In this note, we examine how the BKP structure of the generating series of several models of maps on non-oriented surfaces can be used to obtain explicit and/or efficient recurrence formulas for their enumeration according to the genus and size parameters. Using techniques already known in the orientable case (elimination of variables via Virasoro constraints or Tutte equations), we naturally obtain recurrence formulas with non-polynomial coefficients. This non-polynomiality reflects the presence of shifts of the charge parameter in the BKP equation. Nevertheless, we show that it is possible to obtain non-shifted versions, meaning pure ODEs for the associated generating functions, from which recurrence relations with polynomial coefficients can be extracted. We treat the cases of triangulations, general maps, and bipartite maps. These recurrences with polynomial coefficients are conceptually interesting but bigger to write than those with non-polynomial coefficients. However they are relatively nice-looking in the case of one-face maps. In particular we show that Ledoux's recurrence for non-oriented one-face maps can be recovered in this way, and we obtain the analogous statement for the (bivariate) bipartite case.
通过可积性枚举非定向映射
在本文中,我们研究了如何利用非定向曲面上几种映射模型的生成序列的BKP结构,根据属和大小参数获得它们的枚举的显式和/或有效的递归公式。使用在可定向情况下已知的技术(通过Virasoro约束或Tutte方程消除变量),我们自然地获得非多项式系数的递归公式。这种非多项式性反映了BKP方程中电荷参数移位的存在。然而,我们证明可以获得非移位版本,即相关生成函数的纯ode,从中可以提取具有多项式系数的递归关系。我们处理三角剖分、一般映射和二部映射的情况。这些多项式系数的递归在概念上很有趣,但比那些非多项式系数的递归要大得多。然而,在单面地图的情况下,它们相对好看。特别地,我们证明了用这种方法可以恢复非定向单面映射的Ledoux递推式,并且我们得到了(二元)二部情况的类似陈述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信