Text Mining in Survey Data

Christine P Chai
{"title":"Text Mining in Survey Data","authors":"Christine P Chai","doi":"10.29115/SP-2018-0035","DOIUrl":null,"url":null,"abstract":"Free text responses in surveys contain important information and should be analyzed by researchers. However, human coding of survey text is not only expensive, but also vulnerable to subjectivity. An automated text mining approach can solve these problems. Therefore, we demonstrate using the supervised latent Dirichlet allocation (sLDA) to jointly analyze text and numerical data in an employee satisfaction survey. For each rating, the algorithm outputs selected words as the “topic” and estimates the credible interval. Finally, we discuss future applications and advantages of utilizing survey text.","PeriodicalId":74893,"journal":{"name":"Survey practice","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29115/SP-2018-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Free text responses in surveys contain important information and should be analyzed by researchers. However, human coding of survey text is not only expensive, but also vulnerable to subjectivity. An automated text mining approach can solve these problems. Therefore, we demonstrate using the supervised latent Dirichlet allocation (sLDA) to jointly analyze text and numerical data in an employee satisfaction survey. For each rating, the algorithm outputs selected words as the “topic” and estimates the credible interval. Finally, we discuss future applications and advantages of utilizing survey text.
调查数据中的文本挖掘
调查中的自由文本回复包含重要信息,应该由研究人员进行分析。然而,对调查文本进行人工编码不仅成本高,而且容易产生主观性。自动文本挖掘方法可以解决这些问题。因此,我们证明了使用监督潜狄利克雷分配(sLDA)来联合分析员工满意度调查中的文本和数字数据。对于每个评级,算法输出选定的单词作为“主题”,并估计可信区间。最后,讨论了调查文本的应用前景和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信