Peripheral areas and their distinctive characteristics: The case of Hungary

IF 1.8 2区 社会学 Q2 GEOGRAPHY
J. Pénzes, G. Demeter
{"title":"Peripheral areas and their distinctive characteristics: The case of Hungary","authors":"J. Pénzes, G. Demeter","doi":"10.2478/mgr-2021-0016","DOIUrl":null,"url":null,"abstract":"Abstract The delimitation and classification of peripheral settlements using multivariate statistical methods is presented in this article, with a case study of Hungary. A combination of four different methods provided the basis for the delimitation of settlements defined as peripheral. As significant overlapping was detected between the results of the different methods, peripheries – more than one-fifth of the Hungarian settlements – were identified in a common set of the results. The independence of the results from the applied methods points to the fact that peripherisation is multi-faceted, and the peripheries of Hungary are stable and well-discernible from other regions. After the identification of peripheral areas, we classified these settlements into groups based on their specific features. Multiple steps specifying the relevant variables resulted in selecting the most appropriate 10 indicators and these served as the basis for a hierarchical cluster analysis, through which 7 clusters (types of peripheries) were identified. Five of them comprised enough cases to detect the most important dimensions and specific features of the backwardness of these groups. These clusters demonstrated a spatial pattern and their socioeconomic and infrastructural features highlighted considerable disparities. These differences should be taken into consideration when development policies are applied at regional levels or below.","PeriodicalId":45910,"journal":{"name":"Moravian Geographical Reports","volume":"29 1","pages":"217 - 230"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moravian Geographical Reports","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.2478/mgr-2021-0016","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract The delimitation and classification of peripheral settlements using multivariate statistical methods is presented in this article, with a case study of Hungary. A combination of four different methods provided the basis for the delimitation of settlements defined as peripheral. As significant overlapping was detected between the results of the different methods, peripheries – more than one-fifth of the Hungarian settlements – were identified in a common set of the results. The independence of the results from the applied methods points to the fact that peripherisation is multi-faceted, and the peripheries of Hungary are stable and well-discernible from other regions. After the identification of peripheral areas, we classified these settlements into groups based on their specific features. Multiple steps specifying the relevant variables resulted in selecting the most appropriate 10 indicators and these served as the basis for a hierarchical cluster analysis, through which 7 clusters (types of peripheries) were identified. Five of them comprised enough cases to detect the most important dimensions and specific features of the backwardness of these groups. These clusters demonstrated a spatial pattern and their socioeconomic and infrastructural features highlighted considerable disparities. These differences should be taken into consideration when development policies are applied at regional levels or below.
周边地区及其特点:以匈牙利为例
摘要本文介绍了使用多元统计方法对周边定居点进行划界和分类,并以匈牙利为例进行了研究。四种不同方法的结合为界定被定义为外围定居点提供了基础。由于在不同方法的结果之间发现了显著的重叠,在一组共同的结果中确定了周边地区——超过匈牙利定居点的五分之一。结果与所用方法的独立性表明,周边地区是多方面的,匈牙利的周边地区是稳定的,与其他地区有很好的区别。在对周边地区进行识别后,我们根据这些定居点的具体特征将其分类。指定相关变量的多个步骤导致选择了最合适的10个指标,这些指标是层次聚类分析的基础,通过层次聚类分析确定了7个聚类(外围类型)。其中五个案例足以揭示这些群体落后的最重要方面和具体特征。这些集群展示了一种空间模式,其社会经济和基础设施特征突出了相当大的差异。在区域一级或以下实施发展政策时,应考虑到这些差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
4.00%
发文量
14
期刊介绍: Moravian Geographical Reports je mezinárodní časopis, publikovaný v anglickém jazyce od roku 1993 Ústavem geoniky Akademie věd ČR. Publikuje příspěvky geografů a odborníků příbuzných disciplin včetně geověd a geoekologie, které mají výraznou regionální orientaci. Základní otázku, před níž stojí v současné době tito odborníci, lze položit následovně: „Jaká je úloha regionů a lokalit v globalizované společnosti, daném geografickém měřítku a jak ji můžeme hodnotit?“
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信