{"title":"PERFORMANCE ANALYSIS AND DEVELOPMENT OF PATH LOSS MODEL FOR TELEVISION SIGNALS IN IMO STATE, NIGERIA","authors":"P. C. Iwuji","doi":"10.31489/2023no2/87-98","DOIUrl":null,"url":null,"abstract":"It is impossible to overstate the importance of propagation models in wireless network planning, frequency assignment, and television parameter evaluation. The fact that no two locations are identical in terms of climatic conditions, building patterns, terrain, etc. makes using path loss predicting models for any area extremely challenging. Therefore, it is impossible to develop a single path loss model that applies to all environmental settings. The main aim of this study is to develop a path loss model for NTA channel 12 Owerri and evaluate its performance based on received signal strength values along five selected routes in Imo State, Nigeria.A suitable path loss model was developed by critically analyzing the measured path loss values of each base station, which were retrieved from the signal strength data received. The values of the developed path loss model were compared to those of other empirical path loss models developed by other researchers as well as the measured path loss values. The results show that the proposed path loss model is well suited for predicting the path loss of NTA channel 12 Owerri signals in the study environment, while the other conventional empirical models taken into consideration in this study overestimated the path loss of NTA channel 12 Owerri signals with Root Mean Square Error and Mean Error of 63.65 and above. Additionally, the findings indicate that NTA Owerri performs poorly at a distance of 18 kilometers from the base transmitting station. The overall findings are helpful for designing prospective television network channels in the study location and other similar environments.","PeriodicalId":11789,"journal":{"name":"Eurasian Physical Technical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Physical Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023no2/87-98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
It is impossible to overstate the importance of propagation models in wireless network planning, frequency assignment, and television parameter evaluation. The fact that no two locations are identical in terms of climatic conditions, building patterns, terrain, etc. makes using path loss predicting models for any area extremely challenging. Therefore, it is impossible to develop a single path loss model that applies to all environmental settings. The main aim of this study is to develop a path loss model for NTA channel 12 Owerri and evaluate its performance based on received signal strength values along five selected routes in Imo State, Nigeria.A suitable path loss model was developed by critically analyzing the measured path loss values of each base station, which were retrieved from the signal strength data received. The values of the developed path loss model were compared to those of other empirical path loss models developed by other researchers as well as the measured path loss values. The results show that the proposed path loss model is well suited for predicting the path loss of NTA channel 12 Owerri signals in the study environment, while the other conventional empirical models taken into consideration in this study overestimated the path loss of NTA channel 12 Owerri signals with Root Mean Square Error and Mean Error of 63.65 and above. Additionally, the findings indicate that NTA Owerri performs poorly at a distance of 18 kilometers from the base transmitting station. The overall findings are helpful for designing prospective television network channels in the study location and other similar environments.