The $L^p$-$L^q$ Boundedness and Compactness of Bergman Type Operators

IF 0.6 4区 数学 Q3 MATHEMATICS
Lijia Ding, Kai Wang
{"title":"The $L^p$-$L^q$ Boundedness and Compactness of Bergman Type Operators","authors":"Lijia Ding, Kai Wang","doi":"10.11650/tjm/220101","DOIUrl":null,"url":null,"abstract":". We investigate Bergman type operators on the complex unit ball, which are singular integral operators induced by the modified Bergman kernel. We consider the L p - L q boundedness and compactness of Bergman type operators. The results of boundedness can be viewed as the Hardy–Littlewood–Sobolev (HLS) type theorem in the case unit ball. We also give some sharp norm estimates of Bergman type operators which in fact gives the upper bounds of the optimal constants in the HLS type inequality on the unit ball. Moreover, a trace formula is given.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

. We investigate Bergman type operators on the complex unit ball, which are singular integral operators induced by the modified Bergman kernel. We consider the L p - L q boundedness and compactness of Bergman type operators. The results of boundedness can be viewed as the Hardy–Littlewood–Sobolev (HLS) type theorem in the case unit ball. We also give some sharp norm estimates of Bergman type operators which in fact gives the upper bounds of the optimal constants in the HLS type inequality on the unit ball. Moreover, a trace formula is given.
Bergman型算子的$L^p$-$L^q$有界性和紧性
.我们研究了复单位球上的Bergman型算子,它们是由改进的Bergman-kernel诱导的奇异积分算子。我们考虑Bergman型算子的Lp-Lq有界性和紧致性。有界性的结果可视为单位球情形下的Hardy–Littlewood–Sobolev(HLS)型定理。我们还给出了Bergman型算子的一些尖锐范数估计,它实际上给出了单位球上HLS型不等式中最优常数的上界。此外,还给出了一个迹公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信