Mathematical Modeling of Ecological Systems Algorithm.

Abdel-Razzak Merheb, H. Noura, F. Bateman
{"title":"Mathematical Modeling of Ecological Systems Algorithm.","authors":"Abdel-Razzak Merheb, H. Noura, F. Bateman","doi":"10.22453/lsj-022.2.209-231","DOIUrl":null,"url":null,"abstract":"In this paper, the mathematical modeling of a new bio-inspired evolutionary search algorithm called Ecological Systems Algorithm (ESA) is presented. ESA imitates ecological rules to find iteratively the optimum of a given function through interaction between predator and prey search species. ESA is then compared to the well-known Genetic Algorithm which is a powerful bio-inspired stochastic search/optimization algorithm used for decades. Simulation results of the two algorithms optimizing ten different benchmark functions are used to investigate and compare both algorithms based on their speed, performance, reliability, and efficiency.","PeriodicalId":31081,"journal":{"name":"Lebanese Science Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lebanese Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22453/lsj-022.2.209-231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the mathematical modeling of a new bio-inspired evolutionary search algorithm called Ecological Systems Algorithm (ESA) is presented. ESA imitates ecological rules to find iteratively the optimum of a given function through interaction between predator and prey search species. ESA is then compared to the well-known Genetic Algorithm which is a powerful bio-inspired stochastic search/optimization algorithm used for decades. Simulation results of the two algorithms optimizing ten different benchmark functions are used to investigate and compare both algorithms based on their speed, performance, reliability, and efficiency.
生态系统数学建模算法。
本文提出了一种新的生物进化搜索算法——生态系统算法(ESA)的数学模型。ESA模仿生态规则,通过捕食者和猎物搜索物种之间的相互作用,迭代地找到给定函数的最优解。然后将ESA与著名的遗传算法进行比较,遗传算法是一种强大的受生物启发的随机搜索/优化算法,已经使用了几十年。利用两种算法优化10个不同基准函数的仿真结果,对两种算法的速度、性能、可靠性和效率进行了研究和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
21
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信