Steven Seeger, M. Zvolsky, Salim Melikov, Maja Frerkes, M. Rafecas
{"title":"Dedicated Chamber for Multimodal In Vivo Imaging of Adult Zebrafish.","authors":"Steven Seeger, M. Zvolsky, Salim Melikov, Maja Frerkes, M. Rafecas","doi":"10.1089/zeb.2021.0066","DOIUrl":null,"url":null,"abstract":"In vivo imaging of adult zebrafish is challenging, particularly for dynamic or long acquisitions when using, for example, positron emission tomography, single photon emission computed tomography, computed tomography (CT), or magnetic resonance imaging (MRI). An aqueous environment is indispensable to ensure animal welfare, but commercial small-animal imaging chambers do not provide such conditions, as they are designed for rodents. In this study we present a dedicated flow-through chamber that includes fish immobilization and allows for the continuous supply of fresh water and anesthetics, as well as the removal of excretions. Both flow simulations and experiments, as well as first scans with MRI and CT, support the suitability of the chamber.","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0066","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
In vivo imaging of adult zebrafish is challenging, particularly for dynamic or long acquisitions when using, for example, positron emission tomography, single photon emission computed tomography, computed tomography (CT), or magnetic resonance imaging (MRI). An aqueous environment is indispensable to ensure animal welfare, but commercial small-animal imaging chambers do not provide such conditions, as they are designed for rodents. In this study we present a dedicated flow-through chamber that includes fish immobilization and allows for the continuous supply of fresh water and anesthetics, as well as the removal of excretions. Both flow simulations and experiments, as well as first scans with MRI and CT, support the suitability of the chamber.
期刊介绍:
Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease.
Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage.
Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community.
TechnoFish features two types of articles:
TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines
TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community
Zebrafish coverage includes:
Comparative genomics and evolution
Molecular/cellular mechanisms of cell growth
Genetic analysis of embryogenesis and disease
Toxicological and infectious disease models
Models for neurological disorders and aging
New methods, tools, and experimental approaches
Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.