The General Gauss Principle of Least Constraint

IF 2.6 4区 工程技术 Q2 MECHANICS
F. Udwadia
{"title":"The General Gauss Principle of Least Constraint","authors":"F. Udwadia","doi":"10.1115/1.4062887","DOIUrl":null,"url":null,"abstract":"\n This paper develops a general form of Gauss's Principle of Least Constraint, which deals with the manner in which Nature appears to orchestrate the motion of constrained mechanical systems. The theory of constrained motion has been at the heart of classical mechanics since the days of Lagrange, and it is used in various areas of science and engineering like analytical dynamics, quantum mechanics, statistical physics, and nonequilibrium thermodynamics. The new principle permits the constraints on any mechanical system to be inconsistent and shows that Nature handles these inconsistent constraints in the least squares sense. This broadening of Gauss's original principle leads to two forms of the General Gauss Principle obtained in this paper. They explain why the motion that Nature generates is robust with respect to inaccuracies with which constraints are often specified in modeling naturally occurring and engineered systems since their specification in dynamical systems are often only approximate, and many physical systems may not exactly satisfy them at every instant of time. An important byproduct of the new principle is a refinement of the notion of what constitutes a virtual displacement, a foundational concept in classical mechanics.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062887","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a general form of Gauss's Principle of Least Constraint, which deals with the manner in which Nature appears to orchestrate the motion of constrained mechanical systems. The theory of constrained motion has been at the heart of classical mechanics since the days of Lagrange, and it is used in various areas of science and engineering like analytical dynamics, quantum mechanics, statistical physics, and nonequilibrium thermodynamics. The new principle permits the constraints on any mechanical system to be inconsistent and shows that Nature handles these inconsistent constraints in the least squares sense. This broadening of Gauss's original principle leads to two forms of the General Gauss Principle obtained in this paper. They explain why the motion that Nature generates is robust with respect to inaccuracies with which constraints are often specified in modeling naturally occurring and engineered systems since their specification in dynamical systems are often only approximate, and many physical systems may not exactly satisfy them at every instant of time. An important byproduct of the new principle is a refinement of the notion of what constitutes a virtual displacement, a foundational concept in classical mechanics.
一般高斯最小约束原理
本文发展了高斯最小约束原理的一般形式,它处理自然似乎协调受约束机械系统运动的方式。自拉格朗日以来,约束运动理论一直是经典力学的核心,它被应用于科学和工程的各个领域,如分析动力学、量子力学、统计物理和非平衡热力学。新原理允许任何机械系统上的约束是不一致的,并表明大自然在最小二乘意义上处理这些不一致的约束。对高斯原原理的扩展,得到了两种形式的一般高斯原理。它们解释了为什么自然产生的运动相对于在自然发生和工程系统建模中经常指定的约束的不准确性是健壮的,因为它们在动力系统中的规范通常只是近似的,许多物理系统可能并不完全满足它们在每个时刻。新原理的一个重要副产品是对构成虚位移的概念的改进,虚位移是经典力学中的一个基本概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.80%
发文量
95
审稿时长
5.8 months
期刊介绍: All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信