{"title":"Investigating Changes in Household Consumable Market Using Data Mining Techniques","authors":"A. Hasan-Zadeh, F. Asadi, N. Garbazkar","doi":"10.22044/JADM.2021.10024.2139","DOIUrl":null,"url":null,"abstract":"For an economic review of food prices in May 2019 to determine the trend of rising or decreasing prices compared to previous periods, we considered the price of food items at that time. The types of items consumed during specific periods in urban areas and the whole country are selected for our statistical analysis. Among the various methods of modelling and statistical prediction, and in a new approach, we modeled the data using data mining techniques consisting of decision tree methods, associative rules, and Bayesian law. Then, prediction, validation, and standardization of the accuracy of the validation are performed on them. Results of data validation in the urban and national area and the results of the standardization of the accuracy of validation in the urban and national area are presented with the desired accuracy.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2021.10024.2139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
For an economic review of food prices in May 2019 to determine the trend of rising or decreasing prices compared to previous periods, we considered the price of food items at that time. The types of items consumed during specific periods in urban areas and the whole country are selected for our statistical analysis. Among the various methods of modelling and statistical prediction, and in a new approach, we modeled the data using data mining techniques consisting of decision tree methods, associative rules, and Bayesian law. Then, prediction, validation, and standardization of the accuracy of the validation are performed on them. Results of data validation in the urban and national area and the results of the standardization of the accuracy of validation in the urban and national area are presented with the desired accuracy.