Essential dimension of representations of algebras

IF 1.1 3区 数学 Q1 MATHEMATICS
F. Scavia
{"title":"Essential dimension of representations of algebras","authors":"F. Scavia","doi":"10.4171/cmh/500","DOIUrl":null,"url":null,"abstract":"Let $k$ be a field, $A$ a finitely generated associative $k$-algebra and $\\operatorname{Rep}_A[n]$ the functor $\\operatorname{Fields}_k\\to \\operatorname{Sets}$, which sends a field $K$ containing $k$ to the set of isomorphism classes of representations of $A_K$ of dimension at most $n$. We study the asymptotic behavior of the essential dimension of this functor, i.e., the function $r_A(n) := \\operatorname{ed}_k(\\operatorname{Rep}_A[n])$, as $n\\to\\infty$. In particular, we show that the rate of growth of $r_A(n)$ determines the representation type of $A$. That is, $r_A(n)$ is bounded from above if $A$ is of finite representation type, grows linearly if $A$ is of tame representation type and grows quadratically if A is of wild representation type. Moreover, $r_A(n)$ is a finer invariant of A, which allows us to distinguish among algebras of the same representation type.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/500","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $k$ be a field, $A$ a finitely generated associative $k$-algebra and $\operatorname{Rep}_A[n]$ the functor $\operatorname{Fields}_k\to \operatorname{Sets}$, which sends a field $K$ containing $k$ to the set of isomorphism classes of representations of $A_K$ of dimension at most $n$. We study the asymptotic behavior of the essential dimension of this functor, i.e., the function $r_A(n) := \operatorname{ed}_k(\operatorname{Rep}_A[n])$, as $n\to\infty$. In particular, we show that the rate of growth of $r_A(n)$ determines the representation type of $A$. That is, $r_A(n)$ is bounded from above if $A$ is of finite representation type, grows linearly if $A$ is of tame representation type and grows quadratically if A is of wild representation type. Moreover, $r_A(n)$ is a finer invariant of A, which allows us to distinguish among algebras of the same representation type.
代数表示的基本维数
设$k$为域,$a$为有限生成的关联$k$代数和$\运算符名称{Rep}_A[n] $the functor$\ operatorname{Fields}_k\到\ operatorname{Sets}$,它将包含$K$的字段$K$发送到维度最多$n$的$a_K$表示的同构类的集合。我们研究了这个函子的本质维数的渐近性态,即函数$r_A(n):=\ operatorname{ed}_k(\操作员名称{Rep}_A[n] )$,作为$n\to\infty$。特别地,我们证明了$r_A(n)$的增长率决定了$A$的表示类型。也就是说,如果$A$是有限表示类型,$r_A(n)$从上有界,如果$A$是温和表示类型,则线性增长,如果A是野生表示类型,那么二次增长。此外,$r_A(n)$是A的一个更精细的不变量,它允许我们在相同表示类型的代数之间进行区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信