{"title":"Design of thermoelectric radiant cooling – photovoltaic panels system in the building","authors":"I. Abdulghafor, M. Mnati","doi":"10.24425/ather.2022.144407","DOIUrl":null,"url":null,"abstract":"In this study, a theoretical model is presented to investigate the performance of a thermoelectric (TE) radiant cooling system combined with photovoltaic (PV) modules as a power supply in a building with an ambient temperature reaching more than 45 ◦ C. The combined system TE/PV performance is studied under different solar radiation by using the hourly analysis program and photovoltaic system software. The thermal and electric characteristics of TE are theoretically investigated under various supplied voltages using the multi-paradigm programming language and numerical computing environment. Also, a theoretical analysis of heat transfer between the TE radiant cooling system and an occupied zone from the side, and the other side between the TE radiant cooling system and duct zone is presented. The maximum power consumption by TE panels and building cooling load of 130 kW is predicted for May and June. The 145 units of PV panels could provide about 50% of the power required by TE panels. The thermal and electric characteristics of TE panels results show the minimum cold surface temperature of 15 ◦ C at a supplied voltage between 6 V and 7 V, and the maximum hot surface temperature of 62 ◦ C at a supplied voltage of 16 V. The surface temperature difference between supplied current and supplied power increases as supplied voltage increases. At a higher supplied voltage of 16 V, the maximum surface temperature difference be-tween supplied current, and supplied power of 150 ◦ C, 3.2 A, and 48 W, respectively. The cooling capacity increases as supplied voltage increases, at a surface temperature difference of –10 ◦ C and supplied voltage of 16 V, the maximum cooling capacity is founded at about 60 W. As supplied voltage","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2022.144407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, a theoretical model is presented to investigate the performance of a thermoelectric (TE) radiant cooling system combined with photovoltaic (PV) modules as a power supply in a building with an ambient temperature reaching more than 45 ◦ C. The combined system TE/PV performance is studied under different solar radiation by using the hourly analysis program and photovoltaic system software. The thermal and electric characteristics of TE are theoretically investigated under various supplied voltages using the multi-paradigm programming language and numerical computing environment. Also, a theoretical analysis of heat transfer between the TE radiant cooling system and an occupied zone from the side, and the other side between the TE radiant cooling system and duct zone is presented. The maximum power consumption by TE panels and building cooling load of 130 kW is predicted for May and June. The 145 units of PV panels could provide about 50% of the power required by TE panels. The thermal and electric characteristics of TE panels results show the minimum cold surface temperature of 15 ◦ C at a supplied voltage between 6 V and 7 V, and the maximum hot surface temperature of 62 ◦ C at a supplied voltage of 16 V. The surface temperature difference between supplied current and supplied power increases as supplied voltage increases. At a higher supplied voltage of 16 V, the maximum surface temperature difference be-tween supplied current, and supplied power of 150 ◦ C, 3.2 A, and 48 W, respectively. The cooling capacity increases as supplied voltage increases, at a surface temperature difference of –10 ◦ C and supplied voltage of 16 V, the maximum cooling capacity is founded at about 60 W. As supplied voltage
期刊介绍:
The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.