Questions, data and models underpinning metabolic engineering

R. P. van Rosmalen, V. M. D. Martins dos Santos, M. Suárez-Diez
{"title":"Questions, data and models underpinning metabolic engineering","authors":"R. P. van Rosmalen, V. M. D. Martins dos Santos, M. Suárez-Diez","doi":"10.3389/fsysb.2022.998048","DOIUrl":null,"url":null,"abstract":"Model-driven design has shown great promise for shortening the development time of cell factories by complementing and guiding metabolic engineering efforts. Still, implementation of the prized cycle of model predictions followed by experimental validation remains elusive. The development of modelling frameworks that can lead to actionable knowledge and subsequent integration of experimental efforts requires a conscious effort. In this review, we will explore some of the pitfalls that might derail this process and the critical role of achieving alignment between the selected modelling framework, the available data, and the ultimate purpose of the research. Using recent examples of studies successfully using modelling or other methods of data integration, we will then review the various types of data that can support different modelling formalisms, and in which scenarios these different models are at their most useful.","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2022.998048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model-driven design has shown great promise for shortening the development time of cell factories by complementing and guiding metabolic engineering efforts. Still, implementation of the prized cycle of model predictions followed by experimental validation remains elusive. The development of modelling frameworks that can lead to actionable knowledge and subsequent integration of experimental efforts requires a conscious effort. In this review, we will explore some of the pitfalls that might derail this process and the critical role of achieving alignment between the selected modelling framework, the available data, and the ultimate purpose of the research. Using recent examples of studies successfully using modelling or other methods of data integration, we will then review the various types of data that can support different modelling formalisms, and in which scenarios these different models are at their most useful.
问题,数据和模型支持代谢工程
模型驱动设计通过补充和指导代谢工程的努力,在缩短细胞工厂的开发时间方面显示出巨大的希望。尽管如此,实现模型预测和实验验证的宝贵周期仍然是难以捉摸的。建模框架的发展可以导致可操作的知识和随后的实验成果的整合,需要有意识的努力。在这篇综述中,我们将探讨一些可能破坏这一过程的陷阱,以及在选定的建模框架、可用数据和研究的最终目的之间实现一致性的关键作用。通过使用最近成功使用建模或其他数据集成方法的研究示例,我们将回顾可以支持不同建模形式的各种类型的数据,以及这些不同模型在哪些情况下最有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信