{"title":"Moments of Markovian growth–collapse processes","authors":"Nicolas Privault","doi":"10.1017/apr.2021.63","DOIUrl":null,"url":null,"abstract":"Abstract We apply general moment identities for Poisson stochastic integrals with random integrands to the computation of the moments of Markovian growth–collapse processes. This extends existing formulas for mean and variance available in the literature to closed-form moment expressions of all orders. In comparison with other methods based on differential equations, our approach yields explicit summations in terms of the time parameter. We also treat the case of the associated embedded chain, and provide recursive codes in Maple and Mathematica for the computation of moments and cumulants of any order with arbitrary cut-off moment sequences and jump size functions.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":"54 1","pages":"1070 - 1093"},"PeriodicalIF":0.9000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.63","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We apply general moment identities for Poisson stochastic integrals with random integrands to the computation of the moments of Markovian growth–collapse processes. This extends existing formulas for mean and variance available in the literature to closed-form moment expressions of all orders. In comparison with other methods based on differential equations, our approach yields explicit summations in terms of the time parameter. We also treat the case of the associated embedded chain, and provide recursive codes in Maple and Mathematica for the computation of moments and cumulants of any order with arbitrary cut-off moment sequences and jump size functions.
期刊介绍:
The Advances in Applied Probability has been published by the Applied Probability Trust for over four decades, and is a companion publication to the Journal of Applied Probability. It contains mathematical and scientific papers of interest to applied probabilists, with emphasis on applications in a broad spectrum of disciplines, including the biosciences, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.