Equilibrium analysis for an epidemic model with a reservoir for infection

Q3 Mathematics
I. Laukó, G. Pinter, Rachel Elizabeth TeWinkel
{"title":"Equilibrium analysis for an epidemic model with a reservoir for infection","authors":"I. Laukó, G. Pinter, Rachel Elizabeth TeWinkel","doi":"10.1080/23737867.2018.1551075","DOIUrl":null,"url":null,"abstract":"ABSTRACT We consider a system of non-linear differential equations describing the spread of an epidemic in two interacting populations. The model assumes that the epidemic spreads within the first population, which in turn acts as a reservoir of infection for the second population. We explore the conditions under which the epidemic is endemic in both populations and discuss the global asymptotic stability of the endemic equilibrium using a Lyapunov function and results established for asymptotically autonomous systems. We discuss monkeypox as an example of an emerging disease that can be modelled in this way and present some numerical results representing the model and its extensions.","PeriodicalId":37222,"journal":{"name":"Letters in Biomathematics","volume":"5 1","pages":"255 - 274"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23737867.2018.1551075","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Biomathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737867.2018.1551075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT We consider a system of non-linear differential equations describing the spread of an epidemic in two interacting populations. The model assumes that the epidemic spreads within the first population, which in turn acts as a reservoir of infection for the second population. We explore the conditions under which the epidemic is endemic in both populations and discuss the global asymptotic stability of the endemic equilibrium using a Lyapunov function and results established for asymptotically autonomous systems. We discuss monkeypox as an example of an emerging disease that can be modelled in this way and present some numerical results representing the model and its extensions.
具有感染库的流行病模型的平衡分析
摘要:我们考虑一个非线性微分方程组,描述流行病在两个相互作用的种群中的传播。该模型假设流行病在第一人群中传播,而第一人群又成为第二人群的感染库。我们探索了流行病在两个种群中都是地方病的条件,并使用李雅普诺夫函数和渐近自治系统的结果讨论了地方病平衡的全局渐近稳定性。我们将猴痘作为一种新出现的疾病的例子进行了讨论,可以用这种方式对其进行建模,并给出了一些代表该模型及其扩展的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Biomathematics
Letters in Biomathematics Mathematics-Statistics and Probability
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信