A Software Tutorial for Matching in Clustered Observational Studies

Luke Keele, Matthew Lenard, Luke Miratrix, Lindsay Page
{"title":"A Software Tutorial for Matching in Clustered Observational Studies","authors":"Luke Keele, Matthew Lenard, Luke Miratrix, Lindsay Page","doi":"10.1353/obs.2023.a906624","DOIUrl":null,"url":null,"abstract":"Abstract:Many interventions occur in settings where treatments are applied to groups. For example, a math intervention may be implemented for all students in some schools and withheld from students in other schools. When such treatments are non-randomly allocated, researchers can use statistical adjustment to make treated and control groups similar in terms of observed characteristics. Recent work in statistics has developed a form of matching, known as multilevel matching, that is designed for contexts where treatments are clustered. In this article, we provide a tutorial on how to analyze clustered treatment using multilevel matching. We use a real data application to explain the full set of steps for the analysis of a clustered observational study.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.a906624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract:Many interventions occur in settings where treatments are applied to groups. For example, a math intervention may be implemented for all students in some schools and withheld from students in other schools. When such treatments are non-randomly allocated, researchers can use statistical adjustment to make treated and control groups similar in terms of observed characteristics. Recent work in statistics has developed a form of matching, known as multilevel matching, that is designed for contexts where treatments are clustered. In this article, we provide a tutorial on how to analyze clustered treatment using multilevel matching. We use a real data application to explain the full set of steps for the analysis of a clustered observational study.
集群观测研究中的匹配软件教程
摘要:许多干预措施发生在治疗适用于群体的环境中。例如,数学干预可能对某些学校的所有学生实施,而对其他学校的学生不实施。当这些治疗是非随机分配时,研究人员可以使用统计调整使治疗组和对照组在观察到的特征方面相似。最近在统计学方面的工作已经发展出一种匹配形式,称为多层次匹配,它是为治疗聚集的环境而设计的。在本文中,我们提供了一个关于如何使用多级匹配分析聚类处理的教程。我们使用一个真实的数据应用程序来解释群集观察性研究分析的全套步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信