Crossed modules and Whitehead sequences

IF 0.5 4区 数学
Nelson Martins-Ferreira
{"title":"Crossed modules and Whitehead sequences","authors":"Nelson Martins-Ferreira","doi":"10.1007/s40062-016-0159-6","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of Whitehead sequence which is defined for a base category together with a system of abstract actions over it. In the classical case of groups and group actions the Whitehead sequences are precisely the crossed modules of groups. For a general setting we give sufficient conditions for the existence of a categorical equivalence between internal groupoids and Whitehead sequences.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"11 4","pages":"893 - 921"},"PeriodicalIF":0.5000,"publicationDate":"2016-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-016-0159-6","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-016-0159-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce the notion of Whitehead sequence which is defined for a base category together with a system of abstract actions over it. In the classical case of groups and group actions the Whitehead sequences are precisely the crossed modules of groups. For a general setting we give sufficient conditions for the existence of a categorical equivalence between internal groupoids and Whitehead sequences.

交叉模块和Whitehead序列
我们引入了Whitehead序列的概念,该概念是为一个基本范畴及其上的一组抽象动作所定义的。在群和群作用的经典情况下,Whitehead序列正是群的交叉模。在一般情况下,给出了内群与Whitehead序列之间存在范畴等价的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信