H. Costa, J. Almeida, D. Liang, D. Garcia, M. Catela, B. Tibúrcio, C. Vistas
{"title":"Multirod approach to enhance solar-to-laser conversion efficiency in the Odeillo solar furnace","authors":"H. Costa, J. Almeida, D. Liang, D. Garcia, M. Catela, B. Tibúrcio, C. Vistas","doi":"10.1117/1.JPE.12.048001","DOIUrl":null,"url":null,"abstract":"Abstract. A multirod solar laser station for the megawatt solar furnace (MWSF) in Odeillo, France, was conceptualized and numerically studied to improve the solar-to-laser power conversion efficiency. 18 heliostats from the 63-heliostat field were selected, and 347 kW of solar power was obtained at its focus. From there, a two-dimensional compound parabolic concentrator further concentrated and redistributed the solar rays toward 11 core-doped Nd:YAG rods, each fixed inside a fused silica flow tube. 11.40 kW of total multimode laser power was calculated, corresponding to a 3.29% solar-to-laser power conversion efficiency. This efficiency value represents an enhancement of 1.70 and 1.26 times over that attained from single-rod solar laser systems in side-pumping configuration tested in Odeillo, France, in which Nd:YAG rods were codoped with Cr3 + and Ce3 + ions, respectively. It was also 1.44 times higher than that obtained by a previously proposed side-pumping scheme with a solar flux homogenizer and 12 Nd:YAG rods for the same MWSF.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"048001 - 048001"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.048001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. A multirod solar laser station for the megawatt solar furnace (MWSF) in Odeillo, France, was conceptualized and numerically studied to improve the solar-to-laser power conversion efficiency. 18 heliostats from the 63-heliostat field were selected, and 347 kW of solar power was obtained at its focus. From there, a two-dimensional compound parabolic concentrator further concentrated and redistributed the solar rays toward 11 core-doped Nd:YAG rods, each fixed inside a fused silica flow tube. 11.40 kW of total multimode laser power was calculated, corresponding to a 3.29% solar-to-laser power conversion efficiency. This efficiency value represents an enhancement of 1.70 and 1.26 times over that attained from single-rod solar laser systems in side-pumping configuration tested in Odeillo, France, in which Nd:YAG rods were codoped with Cr3 + and Ce3 + ions, respectively. It was also 1.44 times higher than that obtained by a previously proposed side-pumping scheme with a solar flux homogenizer and 12 Nd:YAG rods for the same MWSF.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.