Md. Nabi Newaz Khan, Manjur A Elahi, Jhutan Chandra Kuri, P. Sarker, Faiz Shaikh
{"title":"Acid Resistance of Alkali Activated Composites Containing Waste Glass Fine Aggregate","authors":"Md. Nabi Newaz Khan, Manjur A Elahi, Jhutan Chandra Kuri, P. Sarker, Faiz Shaikh","doi":"10.1680/jadcr.21.00022","DOIUrl":null,"url":null,"abstract":"This study examined the efficacy of waste glass cullet as a substitute materials to natural fine aggregate in alkali activated composites when exposed to H2SO4 and HCl acid solutions for one year. The changes in physical appearance, surface alkalinity, mass, mechanical strength and microstructure of the hardened samples before and after immersion in acid solutions were investigated. The findings of the experimental work indicated that the physical, mechanical and microstructural damages of the specimens due to acid attacks increased with the rise of glass aggregate percentages. This is attributed to the smooth surface texture and angularity of the glass cullet which affected the bond with the damaged paste matrix at the interfacial transition zone (ITZ) and increased the porosity. However, the acid resistance performance of the mortars containing up to 50% glass aggregate was found satisfactory when compared with the mortar without glass fine aggregate. Therefore, the use of waste glass cullet as a partial replacement of natural sand by up to 50% is considered feasible in alkali activated systems against acid exposures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.21.00022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examined the efficacy of waste glass cullet as a substitute materials to natural fine aggregate in alkali activated composites when exposed to H2SO4 and HCl acid solutions for one year. The changes in physical appearance, surface alkalinity, mass, mechanical strength and microstructure of the hardened samples before and after immersion in acid solutions were investigated. The findings of the experimental work indicated that the physical, mechanical and microstructural damages of the specimens due to acid attacks increased with the rise of glass aggregate percentages. This is attributed to the smooth surface texture and angularity of the glass cullet which affected the bond with the damaged paste matrix at the interfacial transition zone (ITZ) and increased the porosity. However, the acid resistance performance of the mortars containing up to 50% glass aggregate was found satisfactory when compared with the mortar without glass fine aggregate. Therefore, the use of waste glass cullet as a partial replacement of natural sand by up to 50% is considered feasible in alkali activated systems against acid exposures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.