{"title":"A single-chain model for the linear viscoelasticity of unentangled melts of associating polymers","authors":"Hongwei Liu, G. Ianniruberto, G. Marrucci","doi":"10.1122/8.0000409","DOIUrl":null,"url":null,"abstract":"Existing single-chain models for unentangled associating polymers account for the association by assigning the sticky junctions a large value of the monomeric friction coefficient, which prevents them from moving in space unless stickers effectively dissociate. With such an assumption, comparison of model predictions with linear viscoelastic data is not fully successful in the intermediate range of frequency. In this work, we improve agreement with data by developing a single-chain model where sticky junctions are allowed to quickly move in space without dissociating. We also account for a random distribution of the stickers but differently from the recent model by Jiang et al. [Macromolecules 53, 3438–3451 (2020)]. Predictions of the model are successfully compared with unentangled melt data for two different copolymer chemistries and different sticker concentrations. Particularly significant are the data by Cui et al. [J. Rheol., 62, 1155–1174 (2018)] of melts of polymers with only two stickers per chain, revealing that sticky junctions are in fact also endowed with fast mobility.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000409","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Existing single-chain models for unentangled associating polymers account for the association by assigning the sticky junctions a large value of the monomeric friction coefficient, which prevents them from moving in space unless stickers effectively dissociate. With such an assumption, comparison of model predictions with linear viscoelastic data is not fully successful in the intermediate range of frequency. In this work, we improve agreement with data by developing a single-chain model where sticky junctions are allowed to quickly move in space without dissociating. We also account for a random distribution of the stickers but differently from the recent model by Jiang et al. [Macromolecules 53, 3438–3451 (2020)]. Predictions of the model are successfully compared with unentangled melt data for two different copolymer chemistries and different sticker concentrations. Particularly significant are the data by Cui et al. [J. Rheol., 62, 1155–1174 (2018)] of melts of polymers with only two stickers per chain, revealing that sticky junctions are in fact also endowed with fast mobility.
期刊介绍:
The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.