Almost Ricci-Bourguignon soliton on warped product space

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Santosh Kumar, Pankaj Kumar, Buddhadev Pal
{"title":"Almost Ricci-Bourguignon soliton on warped product space","authors":"Santosh Kumar,&nbsp;Pankaj Kumar,&nbsp;Buddhadev Pal","doi":"10.1016/S0034-4877(23)00058-7","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this article is to study the almost Ricci-Bourguignon soliton<span> on warped product space. Some results for solenoidal and concurrent vector fields are obtained on warped product space with almost Ricci-Bourguignon soliton. We provide the relation between the warped manifold and its base manifold (fiber manifold) for an almost Ricci-Bourguignon soliton. We also generalize the Bochner formula in warped product space. Next, we study the Riemannian map whose total manifold admits an almost Ricci-Bourguignon soliton. We find the condition for a kernel of Riemannian map to become an almost Ricci-Bourguignon soliton. Moreover, we give an example for almost Ricci-Bourguignon soliton on warped product space.</span></p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"92 1","pages":"Pages 99-115"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487723000587","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this article is to study the almost Ricci-Bourguignon soliton on warped product space. Some results for solenoidal and concurrent vector fields are obtained on warped product space with almost Ricci-Bourguignon soliton. We provide the relation between the warped manifold and its base manifold (fiber manifold) for an almost Ricci-Bourguignon soliton. We also generalize the Bochner formula in warped product space. Next, we study the Riemannian map whose total manifold admits an almost Ricci-Bourguignon soliton. We find the condition for a kernel of Riemannian map to become an almost Ricci-Bourguignon soliton. Moreover, we give an example for almost Ricci-Bourguignon soliton on warped product space.

弯曲积空间上的几乎里奇-布吉尼翁孤子
本文的目的是研究翘曲积空间上的几乎里奇-布吉尼翁孤子。在具有几乎里奇-布吉尼翁孤子的弯曲积空间上,得到了螺线形和并发矢量场的一些结果。给出了近似里奇-布吉尼翁孤子的弯曲流形与其基流形(纤维流形)之间的关系。我们也推广了Bochner公式在翘曲积空间中的应用。其次,我们研究了黎曼映射,其全流形承认一个几乎里奇-布吉尼翁孤子。我们找到了黎曼映射核成为几乎里奇-布吉尼翁孤子的条件。此外,我们还给出了翘曲积空间上的几乎Ricci-Bourguignon孤子的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信