Some results on fractional Hahn difference boundary value problems

IF 2 3区 数学 Q1 MATHEMATICS
Elsaddam A. Baheeg, K. Oraby, M. Akel
{"title":"Some results on fractional Hahn difference boundary value problems","authors":"Elsaddam A. Baheeg, K. Oraby, M. Akel","doi":"10.1515/dema-2022-0247","DOIUrl":null,"url":null,"abstract":"Abstract Fractional Hahn boundary value problems are significant tools to describe mathematical and physical phenomena depending on non-differentiable functions. In this work, we develop certain aspects of the theory of fractional Hahn boundary value problems involving fractional Hahn derivatives of the Caputo type. First, we construct the Green function for an α th \\alpha {\\rm{th}} -order fractional boundary value problem, with 1 < α < 2 1\\lt \\alpha \\lt 2 , and discuss some important properties of the Green function. The solutions to the proposed problems are obtained in terms of the Green function. The uniqueness of the solutions is proved by various fixed point theorems. The Banach’s contraction mapping theorem, the Schauder’s theorem, and the Browder’s theorem are used.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0247","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Fractional Hahn boundary value problems are significant tools to describe mathematical and physical phenomena depending on non-differentiable functions. In this work, we develop certain aspects of the theory of fractional Hahn boundary value problems involving fractional Hahn derivatives of the Caputo type. First, we construct the Green function for an α th \alpha {\rm{th}} -order fractional boundary value problem, with 1 < α < 2 1\lt \alpha \lt 2 , and discuss some important properties of the Green function. The solutions to the proposed problems are obtained in terms of the Green function. The uniqueness of the solutions is proved by various fixed point theorems. The Banach’s contraction mapping theorem, the Schauder’s theorem, and the Browder’s theorem are used.
分数阶Hahn差分边值问题的一些结果
摘要分数阶Hahn边值问题是描述依赖于不可微函数的数学和物理现象的重要工具。在这项工作中,我们发展了分数Hahn边值问题理论的某些方面,涉及Caputo型分数Hahn导数。首先,我们构造了一个α阶分式边值问题的Green函数,其中1<α<2 1<α2,并讨论了Green函数的一些重要性质。根据格林函数得到了所提出问题的解。通过各种不动点定理证明了解的唯一性。使用了Banach压缩映射定理、Schauder定理和Browder定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信