Fault tolerant synchronisation of integer and fractional order 6D hyper-chaotic systems via two control signals

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
A. Sabaghian, S. Balochian
{"title":"Fault tolerant synchronisation of integer and fractional order 6D hyper-chaotic systems via two control signals","authors":"A. Sabaghian, S. Balochian","doi":"10.1080/17445760.2021.1991923","DOIUrl":null,"url":null,"abstract":"In this study, two 6D hyper-chaotic systems with integer and fractional orders in the presence of external disturbance and bounded parametric uncertainty with unknown bounds with two control signals are synchronised using an adaptive-sliding mode controller. In the definition of fractional order differentiation, Riemann-Louiville definition is used. To this end, the sliding surface and proper active feedback control law area determined and proper estimation laws are proposed for estimating unknown uncertainty bounds and the disturbance. The stability of the closed-loop control system is proved using the Lyapunov theorem. Simulation results in MATLAB demonstrate the desired efficiency of this method in the presence of disturbance and parametric uncertainty.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2021.1991923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, two 6D hyper-chaotic systems with integer and fractional orders in the presence of external disturbance and bounded parametric uncertainty with unknown bounds with two control signals are synchronised using an adaptive-sliding mode controller. In the definition of fractional order differentiation, Riemann-Louiville definition is used. To this end, the sliding surface and proper active feedback control law area determined and proper estimation laws are proposed for estimating unknown uncertainty bounds and the disturbance. The stability of the closed-loop control system is proved using the Lyapunov theorem. Simulation results in MATLAB demonstrate the desired efficiency of this method in the presence of disturbance and parametric uncertainty.
基于两个控制信号的整数阶和分数阶6D超混沌系统容错同步
在本研究中,两个具有整数阶和分数阶的6D超混沌系统在存在外部扰动和具有未知边界的有界参数不确定性的情况下,使用自适应滑模控制器同步两个控制信号。在分数阶微分的定义中,使用了Riemann-Louville定义。为此,针对未知不确定性界和扰动的估计,提出了滑动面和适当的主动反馈控制律面积确定和适当的估计律。利用李亚普诺夫定理证明了闭环控制系统的稳定性。在MATLAB中的仿真结果证明了该方法在存在扰动和参数不确定性的情况下的预期效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信