Hierarchical Bayesian hedonic regression analysis of Japanese rice wine: is the price right?

IF 2.3 Q1 AGRONOMY
Wakuo Saito, T. Nakatsuma
{"title":"Hierarchical Bayesian hedonic regression analysis of Japanese rice wine: is the price right?","authors":"Wakuo Saito, T. Nakatsuma","doi":"10.1108/ijwbr-10-2021-0056","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to formulate a hedonic pricing model for Japanese rice wine, sake, via hierarchical Bayesian modeling estimated using an efficient Markov chain Monte Carlo (MCMC) method. Using the estimated model, the authors examine how producing regions, rice breeds and taste characteristics affect sake prices.\n\n\nDesign/methodology/approach\nThe datasets in the estimation consist of cross-sectional observations of 403 sake brands, which include sake prices, taste indicators, premium categories, rice breeds and regional dummy variables. Data were retrieved from Rakuten, Japan’s largest online shopping site. The authors used the Bayesian estimation of the hedonic pricing model and used an ancillarity–sufficiency interweaving strategy to improve the sampling efficiency of MCMC.\n\n\nFindings\nThe estimation results indicate that Japanese consumers value sweeter sake more, and the price of sake reflects the cost of rice preprocessing only for the most-expensive category of sake. No distinctive differences were identified among rice breeds or producing regions in the hedonic pricing model.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this study is the first to estimate a hedonic pricing model of sake, despite the rich literature on alcoholic beverages. The findings may contribute new insights into consumer preference and proper pricing for sake breweries and distributors venturing into the e-commerce market.\n","PeriodicalId":46955,"journal":{"name":"International Journal of Wine Business Research","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wine Business Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijwbr-10-2021-0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose This paper aims to formulate a hedonic pricing model for Japanese rice wine, sake, via hierarchical Bayesian modeling estimated using an efficient Markov chain Monte Carlo (MCMC) method. Using the estimated model, the authors examine how producing regions, rice breeds and taste characteristics affect sake prices. Design/methodology/approach The datasets in the estimation consist of cross-sectional observations of 403 sake brands, which include sake prices, taste indicators, premium categories, rice breeds and regional dummy variables. Data were retrieved from Rakuten, Japan’s largest online shopping site. The authors used the Bayesian estimation of the hedonic pricing model and used an ancillarity–sufficiency interweaving strategy to improve the sampling efficiency of MCMC. Findings The estimation results indicate that Japanese consumers value sweeter sake more, and the price of sake reflects the cost of rice preprocessing only for the most-expensive category of sake. No distinctive differences were identified among rice breeds or producing regions in the hedonic pricing model. Originality/value To the best of the authors’ knowledge, this study is the first to estimate a hedonic pricing model of sake, despite the rich literature on alcoholic beverages. The findings may contribute new insights into consumer preference and proper pricing for sake breweries and distributors venturing into the e-commerce market.
日本米酒的层次贝叶斯特征回归分析:价格正确吗?
目的本文旨在通过使用有效的马尔可夫链蒙特卡罗(MCMC)方法估计的分层贝叶斯模型,建立日本黄酒、清酒的特征定价模型。利用估计模型,研究了产地、稻米品种和口味特征对清酒价格的影响。设计/方法/方法评估中的数据集由403个清酒品牌的横断面观察组成,其中包括清酒价格、口味指标、溢价类别、水稻品种和区域虚拟变量。数据来自日本最大的在线购物网站乐天。作者使用特征定价模型的贝叶斯估计,并使用辅助-充分交织策略来提高MCMC的抽样效率。结果表明,日本消费者更看重更甜的清酒,而清酒的价格只反映了最昂贵的清酒类别的大米预处理成本。在特征定价模型中,水稻品种或产区之间没有发现显著差异。原创性/价值据作者所知,尽管有大量关于酒精饮料的文献,但这项研究还是第一次估计了清酒的享乐定价模型。这些发现可能有助于深入了解消费者偏好以及进军电子商务市场的清酒酿造厂和经销商的适当定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
11.10%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信