{"title":"Rational cuspidal curves in a moving family of ℙ2","authors":"R. Mukherjee, R. Singh","doi":"10.1515/coma-2020-0110","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we obtain a formula for the number of rational degree d curves in ℙ3 having a cusp, whose image lies in a ℙ2 and that passes through r lines and s points (where r + 2s = 3d + 1). This problem can be viewed as a family version of the classical question of counting rational cuspidal curves in ℙ2, which has been studied earlier by Z. Ran ([13]), R. Pandharipande ([12]) and A. Zinger ([16]). We obtain this number by computing the Euler class of a relevant bundle and then finding out the corresponding degenerate contribution to the Euler class. The method we use is closely based on the method followed by A. Zinger ([16]) and I. Biswas, S. D’Mello, R. Mukherjee and V. Pingali ([1]). We also verify that our answer for the characteristic numbers of rational cuspidal planar cubics and quartics is consistent with the answer obtained by N. Das and the first author ([2]), where they compute the characteristic number of δ-nodal planar curves in ℙ3 with one cusp (for δ ≤ 2).","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"8 1","pages":"125 - 137"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2020-0110","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2020-0110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In this paper we obtain a formula for the number of rational degree d curves in ℙ3 having a cusp, whose image lies in a ℙ2 and that passes through r lines and s points (where r + 2s = 3d + 1). This problem can be viewed as a family version of the classical question of counting rational cuspidal curves in ℙ2, which has been studied earlier by Z. Ran ([13]), R. Pandharipande ([12]) and A. Zinger ([16]). We obtain this number by computing the Euler class of a relevant bundle and then finding out the corresponding degenerate contribution to the Euler class. The method we use is closely based on the method followed by A. Zinger ([16]) and I. Biswas, S. D’Mello, R. Mukherjee and V. Pingali ([1]). We also verify that our answer for the characteristic numbers of rational cuspidal planar cubics and quartics is consistent with the answer obtained by N. Das and the first author ([2]), where they compute the characteristic number of δ-nodal planar curves in ℙ3 with one cusp (for δ ≤ 2).
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.