Mathematical framework for describing multipartite entanglement in terms of rows or columns of coefficient matrices

IF 0.7 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS
Yi Huang, Huapeng Yu, Fang Miao, T. Han, Xiujun Zhang
{"title":"Mathematical framework for describing multipartite entanglement in terms of rows or columns of coefficient matrices","authors":"Yi Huang, Huapeng Yu, Fang Miao, T. Han, Xiujun Zhang","doi":"10.1142/s0219749921500350","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a mathematical framework for describing entanglement quantitatively and qualitatively for multipartite qudit states in terms of rows or columns of coefficient matrices. More specifically, we propose an entanglement measure and separability criteria based on rows or columns of coefficient matrices. This entanglement measure has an explicit mathematical expression by means of exterior products of all pairs of rows or columns in coefficient matrices. It is introduced via our result that the [Formula: see text]-concurrence coincides with the entanglement measure based on two-by-two minors of coefficient matrices. Depending on our entanglement measure, we obtain the separability criteria and maximal entanglement criteria in terms of rows or columns of coefficient matrices. Our conclusions show that just like every two-by-two minor in a coefficient matrix of a multipartite pure state, every pair of rows or columns can also exhibit its entanglement properties, and thus can be viewed as its smallest entanglement contribution unit too. The great merit of our entanglement measure and separability criteria is two-fold. First, they are very practical and convenient for computation compared to other methods. Second, they have clear geometric interpretations.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749921500350","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we develop a mathematical framework for describing entanglement quantitatively and qualitatively for multipartite qudit states in terms of rows or columns of coefficient matrices. More specifically, we propose an entanglement measure and separability criteria based on rows or columns of coefficient matrices. This entanglement measure has an explicit mathematical expression by means of exterior products of all pairs of rows or columns in coefficient matrices. It is introduced via our result that the [Formula: see text]-concurrence coincides with the entanglement measure based on two-by-two minors of coefficient matrices. Depending on our entanglement measure, we obtain the separability criteria and maximal entanglement criteria in terms of rows or columns of coefficient matrices. Our conclusions show that just like every two-by-two minor in a coefficient matrix of a multipartite pure state, every pair of rows or columns can also exhibit its entanglement properties, and thus can be viewed as its smallest entanglement contribution unit too. The great merit of our entanglement measure and separability criteria is two-fold. First, they are very practical and convenient for computation compared to other methods. Second, they have clear geometric interpretations.
用系数矩阵的行或列来描述多部纠缠的数学框架
在本文中,我们开发了一个数学框架,用于用系数矩阵的行或列来定量和定性描述多部分量子态的纠缠。更具体地说,我们提出了一种基于系数矩阵行或列的纠缠测度和可分性准则。这种纠缠测度通过系数矩阵中所有行或列对的外积具有明确的数学表达式。通过我们的结果介绍了[公式:见正文]-并发性与基于系数矩阵的二乘二次的纠缠测度一致。根据我们的纠缠测度,我们得到了系数矩阵行或列的可分性准则和最大纠缠准则。我们的结论表明,就像多部分纯态的系数矩阵中的每一个二乘二的子一样,每一对行或列也可以表现出其纠缠性质,因此也可以被视为其最小的纠缠贡献单元。我们的纠缠测度和可分性准则的巨大优点是双重的。首先,与其他方法相比,它们非常实用,计算方便。其次,它们有明确的几何解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Information
International Journal of Quantum Information 物理-计算机:理论方法
CiteScore
2.20
自引率
8.30%
发文量
36
审稿时长
10 months
期刊介绍: The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research: Quantum Cryptography Quantum Computation Quantum Communication Fundamentals of Quantum Mechanics Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信