{"title":"Group invariant separating polynomials on a Banach space","authors":"J. Falcó, Domingo García, Mingu Jung, M. Maestre","doi":"10.5565/publmat6612209","DOIUrl":null,"url":null,"abstract":"We study the group invariant continuous polynomials on a Banach space $X$ that separate a given set $K$ in $X$ and a point $z$ outside $K$. We show that if $X$ is a real Banach space, $G$ is a compact group of $\\mathcal{L} (X)$, $K$ is a $G$-invariant set in $X$, and $z$ is a point outside $K$ that can be separated from $K$ by a continuous polynomial $Q$, then $z$ can also be separated from $K$ by a $G$-invariant continuous polynomial $P$. It turns out that this result does not hold when $X$ is a complex Banach space, so we present some additional conditions to get analogous results for the complex case. We also obtain separation theorems under the assumption that $X$ has a Schauder basis which give applications to several classical groups. In this case, we obtain characterizations of points which can be separated by a group invariant polynomial from the closed unit ball.","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6612209","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
We study the group invariant continuous polynomials on a Banach space $X$ that separate a given set $K$ in $X$ and a point $z$ outside $K$. We show that if $X$ is a real Banach space, $G$ is a compact group of $\mathcal{L} (X)$, $K$ is a $G$-invariant set in $X$, and $z$ is a point outside $K$ that can be separated from $K$ by a continuous polynomial $Q$, then $z$ can also be separated from $K$ by a $G$-invariant continuous polynomial $P$. It turns out that this result does not hold when $X$ is a complex Banach space, so we present some additional conditions to get analogous results for the complex case. We also obtain separation theorems under the assumption that $X$ has a Schauder basis which give applications to several classical groups. In this case, we obtain characterizations of points which can be separated by a group invariant polynomial from the closed unit ball.
期刊介绍:
Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page.
Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.