On Determinant Expansions for Hankel Operators

IF 0.3 Q4 MATHEMATICS
G. Blower, Yang Chen
{"title":"On Determinant Expansions for Hankel Operators","authors":"G. Blower, Yang Chen","doi":"10.1515/conop-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract Let w be a semiclassical weight that is generic in Magnus’s sense, and (pn)n=0∞ ({p_n})_{n = 0}^\\infty the corresponding sequence of orthogonal polynomials. We express the Christoffel–Darboux kernel as a sum of products of Hankel integral operators. For ψ ∈ L∞ (iℝ), let W(ψ) be the Wiener-Hopf operator with symbol ψ. We give sufficient conditions on ψ such that 1/ det W(ψ) W(ψ−1) = det(I − Γϕ1 Γϕ2) where Γϕ1 and Γϕ2 are Hankel operators that are Hilbert–Schmidt. For certain, ψ Barnes’s integral leads to an expansion of this determinant in terms of the generalised hypergeometric 2mF2m-1. These results extend those of Basor and Chen [2], who obtained 4F3 likewise. We include examples where the Wiener–Hopf factors are found explicitly.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"7 1","pages":"13 - 44"},"PeriodicalIF":0.3000,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2020-0002","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let w be a semiclassical weight that is generic in Magnus’s sense, and (pn)n=0∞ ({p_n})_{n = 0}^\infty the corresponding sequence of orthogonal polynomials. We express the Christoffel–Darboux kernel as a sum of products of Hankel integral operators. For ψ ∈ L∞ (iℝ), let W(ψ) be the Wiener-Hopf operator with symbol ψ. We give sufficient conditions on ψ such that 1/ det W(ψ) W(ψ−1) = det(I − Γϕ1 Γϕ2) where Γϕ1 and Γϕ2 are Hankel operators that are Hilbert–Schmidt. For certain, ψ Barnes’s integral leads to an expansion of this determinant in terms of the generalised hypergeometric 2mF2m-1. These results extend those of Basor and Chen [2], who obtained 4F3 likewise. We include examples where the Wiener–Hopf factors are found explicitly.
关于Hankel算子的行列式展开
设w为Magnus意义上一般的半经典权值,且(pn)n=0∞{(p_n)}_n =0{ ^ }\infty为相应的正交多项式序列。我们将Christoffel-Darboux核表示为Hankel积分算子积的和。对于ψ∈L∞(i∞),设W(ψ)为符号为ψ的Wiener-Hopf算子。我们给出ψ的充分条件使得1/ det W(ψ) W(ψ−1)= det(I−Γϕ1 Γϕ2)其中Γϕ1和Γϕ2是Hilbert-Schmidt的Hankel算子。当然,ψ Barnes的积分导致了这个行列式在广义超几何2mF2m-1的展开式。这些结果推广了Basor和Chen b[2]的结果,他们同样得到了4F3。我们包括了明确发现维纳-霍普夫因子的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信