Data-Driven Anomaly Detection Framework for Complex Degradation Monitoring of Aero-Engine

IF 1.3 Q2 ENGINEERING, AEROSPACE
Zichen Yan, Jianzhong Sun, Yang Yi, Caiqiong Yang, Jingbo Sun
{"title":"Data-Driven Anomaly Detection Framework for Complex Degradation Monitoring of Aero-Engine","authors":"Zichen Yan, Jianzhong Sun, Yang Yi, Caiqiong Yang, Jingbo Sun","doi":"10.3390/ijtpp8010003","DOIUrl":null,"url":null,"abstract":"Data analysis is an important part of aero engine health management. In order to complete accurate condition monitoring, it is necessary to establish more effective analysis tools. Therefore, an integrated algorithm library dedicated for engine anomaly detection is established, which is PyPEFD (Python Package for Engine Fault Detection). Different algorithms for baseline modeling, anomaly detection and trend analysis are presented and compared. In this paper, the simulation data are used to verify the function of the anomaly detection algorithms, successfully completing the detection of multiple faults and comparing the accuracy algorithm under different conditions.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp8010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

Data analysis is an important part of aero engine health management. In order to complete accurate condition monitoring, it is necessary to establish more effective analysis tools. Therefore, an integrated algorithm library dedicated for engine anomaly detection is established, which is PyPEFD (Python Package for Engine Fault Detection). Different algorithms for baseline modeling, anomaly detection and trend analysis are presented and compared. In this paper, the simulation data are used to verify the function of the anomaly detection algorithms, successfully completing the detection of multiple faults and comparing the accuracy algorithm under different conditions.
航空发动机复杂退化监测的数据驱动异常检测框架
数据分析是航空发动机健康管理的重要组成部分。为了完成准确的状态监测,有必要建立更有效的分析工具。因此,建立了一个专门用于发动机异常检测的集成算法库,即PyPEFD(用于发动机故障检测的Python包)。提出并比较了用于基线建模、异常检测和趋势分析的不同算法。本文利用仿真数据验证了异常检测算法的功能,成功地完成了多个故障的检测,并比较了不同条件下算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
21.40%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信