Characterization of the Naked Mole Rat Incisors: Chemical Composition, Microstructure and Mechanical Properties

IF 1.3 4区 工程技术 Q4 ENGINEERING, BIOMEDICAL
Hongyan Qi, Guixiong Gao, Huixin Wang, Yunhai Ma, Hubiao Wang, Siyang Wu, Jiangtao Yu, Qinghua Wang
{"title":"Characterization of the Naked Mole Rat Incisors: Chemical Composition, Microstructure and Mechanical Properties","authors":"Hongyan Qi, Guixiong Gao, Huixin Wang, Yunhai Ma, Hubiao Wang, Siyang Wu, Jiangtao Yu, Qinghua Wang","doi":"10.1680/jbibn.21.00004","DOIUrl":null,"url":null,"abstract":"The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which makes it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterized the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found that (1) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (2) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (3) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increment of distance from the enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guidelines for the design of bionic machinery and materials.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.21.00004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which makes it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterized the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found that (1) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (2) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (3) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increment of distance from the enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guidelines for the design of bionic machinery and materials.
裸鼹鼠切口的化学成分、微观结构和力学性能表征
裸鼹鼠切牙(NMRI)具有优异的力学性能,是设计和制造仿生机械系统和材料的良好原型。在这项工作中,我们对NMRI的化学成分、微观结构和力学性能进行了表征,并将这些性能与实验室大鼠切牙(LRI)进行了比较。我们发现(1)牙釉质和牙本质由有机物、无机物和水组成。NMRI釉质中Ca/P比值高于LRI釉质。(2) 牙本质具有多孔结构。釉质具有三维网状结构,比LRI釉质的层状结构更复杂、更规则、更致密。(3) 搪瓷具有各向异性。其纵向纳米硬度大于横向纳米硬度,两者均高于LRI搪瓷。它们的纳米硬度和弹性模量随着离牙釉质-牙本质边界距离的增加而增加。牙本质的纳米硬度小于牙釉质的纳米硬度。化学成分和微观结构被认为是NMRI具有优异性能的原因。其化学成分和独特的微观结构可以为仿生机械和材料的设计提供灵感和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspired Biomimetic and Nanobiomaterials
Bioinspired Biomimetic and Nanobiomaterials ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
2.20
自引率
0.00%
发文量
12
期刊介绍: Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices. Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信