{"title":"Tracing the role of sucrose in potato microtuber formation in vitro","authors":"M. S. Islam, M. Roni, A. Uddin, K. Shimasaki","doi":"10.21475/POJ.10.01.17.282","DOIUrl":null,"url":null,"abstract":"Sucrose is a necessary external carbon substrate for in vitro microtuber induction and development. In this study, we determined the correlation between sucrose and microtuber formation in potato by investigating the role and significance of sucrose in the medium and the origin of explants, as well as the potential function of sucrose in microtuber formation in vitro. Sucrose strongly influences microtuber induction, growth, and earliness without negative side effects. The results of this study show there was a significant correlation of R = 0.95 between tuberization and high sucrose content in the medium. High sucrose content in the medium is the carbon source that influences microtuber formation and development irrespective of the origin of explants. The present work could be considered efficient for large scale multiplication and propagation of this important vegetable crop in vitro. Hence, the results of this study should help rapid micropropagation of commercial potato cultivars by using high concentrations of sucrose in the microtuberization medium for a higher percentage of microtuber formation with earliness.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"10 1","pages":"15-19"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/POJ.10.01.17.282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 7
Abstract
Sucrose is a necessary external carbon substrate for in vitro microtuber induction and development. In this study, we determined the correlation between sucrose and microtuber formation in potato by investigating the role and significance of sucrose in the medium and the origin of explants, as well as the potential function of sucrose in microtuber formation in vitro. Sucrose strongly influences microtuber induction, growth, and earliness without negative side effects. The results of this study show there was a significant correlation of R = 0.95 between tuberization and high sucrose content in the medium. High sucrose content in the medium is the carbon source that influences microtuber formation and development irrespective of the origin of explants. The present work could be considered efficient for large scale multiplication and propagation of this important vegetable crop in vitro. Hence, the results of this study should help rapid micropropagation of commercial potato cultivars by using high concentrations of sucrose in the microtuberization medium for a higher percentage of microtuber formation with earliness.
期刊介绍:
Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including:
Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.