The Development and Characterization of Polycaprolactone and Titanium Dioxide Hybrids

M. Monteiro, M. Tavares
{"title":"The Development and Characterization of Polycaprolactone and Titanium Dioxide Hybrids","authors":"M. Monteiro, M. Tavares","doi":"10.4236/ANP.2018.71002","DOIUrl":null,"url":null,"abstract":"Organic/Inorganic hybrid materials have been attracting much attention since they combine the advantages of inorganic materials with the properties of organic polymers. Titanium dioxide nanoparticles (TiO2) present good thermal stability, accessibility and catalytic properties. Polycaprolactone (PCL) is a bi-ocompatible and bioresorbable material, which is being examined as biode-gradable packaging materials, controlled drug release carriers and other medical applications. Hybrids based on PCL containing different amounts of titanium dioxide nanoparticles, ranging from 0.05% to 0.35% w/w, were prepared using the solution cast method. These systems were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), low-field nuclear magnetic resonance (NMR), thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The FTIR analysis confirmed that there was an interaction between the PCL chains and the TiO2 nanoparticles. The XRD and DSC analysis showed that the PCL crystallization was affected by TiO2 incorporation, modifying its semi-crystalline structure to a less ordered structure. When TiO2 nanoparticles were added the values of T1H and T1ρH increased for all hybrids, therefore, their addition produced a new material with less molecular mobility. In the TG analysis, it was observed that the introduction of TiO2 nanoparticles decreased the thermal resistance of PCL. In DSC analysis, the PCL/TiO2 hybrids presented a reduction in the crystallization temperature and degree of crystallinity, except for PCL hybrids containing 0.15% w/w of TiO2 nanoparticles.","PeriodicalId":71264,"journal":{"name":"纳米粒子(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米粒子(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ANP.2018.71002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Organic/Inorganic hybrid materials have been attracting much attention since they combine the advantages of inorganic materials with the properties of organic polymers. Titanium dioxide nanoparticles (TiO2) present good thermal stability, accessibility and catalytic properties. Polycaprolactone (PCL) is a bi-ocompatible and bioresorbable material, which is being examined as biode-gradable packaging materials, controlled drug release carriers and other medical applications. Hybrids based on PCL containing different amounts of titanium dioxide nanoparticles, ranging from 0.05% to 0.35% w/w, were prepared using the solution cast method. These systems were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), low-field nuclear magnetic resonance (NMR), thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The FTIR analysis confirmed that there was an interaction between the PCL chains and the TiO2 nanoparticles. The XRD and DSC analysis showed that the PCL crystallization was affected by TiO2 incorporation, modifying its semi-crystalline structure to a less ordered structure. When TiO2 nanoparticles were added the values of T1H and T1ρH increased for all hybrids, therefore, their addition produced a new material with less molecular mobility. In the TG analysis, it was observed that the introduction of TiO2 nanoparticles decreased the thermal resistance of PCL. In DSC analysis, the PCL/TiO2 hybrids presented a reduction in the crystallization temperature and degree of crystallinity, except for PCL hybrids containing 0.15% w/w of TiO2 nanoparticles.
聚己内酯与二氧化钛杂化材料的研制与表征
有机/无机杂化材料由于结合了无机材料的优点和有机聚合物的特性而受到人们的广泛关注。二氧化钛纳米颗粒(TiO2)具有良好的热稳定性、可及性和催化性能。聚己内酯(PCL)是一种双相容和生物可吸收的材料,目前正在研究作为生物降解包装材料、药物控释载体和其他医疗应用。采用溶液浇铸法制备了含有0.05% ~ 0.35% w/w的二氧化钛纳米颗粒的PCL复合材料。采用x射线衍射(XRD)、红外光谱(FTIR)、低场核磁共振(NMR)、热重分析(TG)和差示扫描量热法(DSC)对这些体系进行了表征。FTIR分析证实PCL链与TiO2纳米颗粒之间存在相互作用。XRD和DSC分析表明,TiO2的掺入影响了PCL的结晶,使其半晶结构改变为无序结构。当TiO2纳米粒子加入后,所有杂化体的T1H和T1ρH值均增加,因此,它们的加入产生了分子迁移率较低的新材料。热重分析发现,TiO2纳米粒子的引入降低了PCL的热阻。在DSC分析中,除了含有0.15% w/w TiO2纳米粒子的PCL杂化物外,PCL/TiO2杂化物的结晶温度和结晶度均有所降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
106
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信