Extended ball convergence for a seventh order derivative free class of algorithms for nonlinear equations

Q3 Mathematics
I. Argyros, Debasis Sharma, C. Argyros, S. K. Parhi, S. K. Sunanda, M. Argyros
{"title":"Extended ball convergence for a seventh order derivative free class of algorithms for nonlinear equations","authors":"I. Argyros, Debasis Sharma, C. Argyros, S. K. Parhi, S. K. Sunanda, M. Argyros","doi":"10.30970/ms.56.1.72-82","DOIUrl":null,"url":null,"abstract":"In the earlier work, expensive Taylor formula and conditions on derivatives up to the eighthorder have been utilized to establish the convergence of a derivative free class of seventh orderiterative algorithms. Moreover, no error distances or results on uniqueness of the solution weregiven. In this study, extended ball convergence analysis is derived for this class by imposingconditions on the first derivative. Additionally, we offer error distances and convergence radiustogether with the region of uniqueness for the solution. Therefore, we enlarge the practicalutility of these algorithms. Also, convergence regions of a specific member of this class are displayedfor solving complex polynomial equations. At the end, standard numerical applicationsare provided to illustrate the efficacy of our theoretical findings.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.1.72-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In the earlier work, expensive Taylor formula and conditions on derivatives up to the eighthorder have been utilized to establish the convergence of a derivative free class of seventh orderiterative algorithms. Moreover, no error distances or results on uniqueness of the solution weregiven. In this study, extended ball convergence analysis is derived for this class by imposingconditions on the first derivative. Additionally, we offer error distances and convergence radiustogether with the region of uniqueness for the solution. Therefore, we enlarge the practicalutility of these algorithms. Also, convergence regions of a specific member of this class are displayedfor solving complex polynomial equations. At the end, standard numerical applicationsare provided to illustrate the efficacy of our theoretical findings.
一类非线性方程组七阶无导数算法的扩展球收敛性
在早期的工作中,使用了昂贵的Taylor公式和八阶导数的条件来建立一类无导数七阶迭代算法的收敛性。此外,并没有给出误差距离和解唯一性的结果。在这项研究中,通过对一阶导数施加条件,导出了这一类的扩展球收敛性分析。此外,我们还提供了误差距离和收敛半径以及解的唯一性区域。因此,我们扩大了这些算法的实用性。此外,这类特定成员的收敛区域也显示用于求解复杂多项式方程。最后,提供了标准的数值应用来说明我们的理论发现的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信