M. Trovati, Khalid Teli, Nikolaos Polatidis, Ufuk Alpsahin Cullen, Simon Bolton
{"title":"Artificial Intuition for Automated Decision-Making","authors":"M. Trovati, Khalid Teli, Nikolaos Polatidis, Ufuk Alpsahin Cullen, Simon Bolton","doi":"10.1080/08839514.2023.2230749","DOIUrl":null,"url":null,"abstract":"Automated decision-making techniques play a crucial role in data science, AI, and general machine learning. However, such techniques need to balance accuracy with computational complexity, as their solution requirements are likely to need exhaustive analysis of the potentially numerous events combinations, which constitute the corresponding scenarios. Intuition is an essential tool in the identification of solutions to problems. More specifically, it can be used to identify, combine and discover knowledge in a “parallel” manner, and therefore more efficiently. As a consequence, the embedding of artificial intuition within data science is likely to provide novel ways to identify and process information. There is extensive research on this topic mainly based on qualitative approaches. However, due to the complexity of this field, limited quantitative models and implementations are available. In this article, the authors have extended the evaluation to include a real-world, multi-disciplinary area in order to provide a more comprehensive assessment. The results demonstrate the value of artificial intuition, when embedded in decision-making and information extraction models and frameworks. In fact, the output produced by the approach discussed in their article was compared with a similar task carried out by a group of experts in the field. This demonstrates comparable results further showing the potential of this framework, as well as artificial intuition as a tool for decision-making and information extraction.","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/08839514.2023.2230749","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Automated decision-making techniques play a crucial role in data science, AI, and general machine learning. However, such techniques need to balance accuracy with computational complexity, as their solution requirements are likely to need exhaustive analysis of the potentially numerous events combinations, which constitute the corresponding scenarios. Intuition is an essential tool in the identification of solutions to problems. More specifically, it can be used to identify, combine and discover knowledge in a “parallel” manner, and therefore more efficiently. As a consequence, the embedding of artificial intuition within data science is likely to provide novel ways to identify and process information. There is extensive research on this topic mainly based on qualitative approaches. However, due to the complexity of this field, limited quantitative models and implementations are available. In this article, the authors have extended the evaluation to include a real-world, multi-disciplinary area in order to provide a more comprehensive assessment. The results demonstrate the value of artificial intuition, when embedded in decision-making and information extraction models and frameworks. In fact, the output produced by the approach discussed in their article was compared with a similar task carried out by a group of experts in the field. This demonstrates comparable results further showing the potential of this framework, as well as artificial intuition as a tool for decision-making and information extraction.
期刊介绍:
Applied Artificial Intelligence addresses concerns in applied research and applications of artificial intelligence (AI). The journal also acts as a medium for exchanging ideas and thoughts about impacts of AI research. Articles highlight advances in uses of AI systems for solving tasks in management, industry, engineering, administration, and education; evaluations of existing AI systems and tools, emphasizing comparative studies and user experiences; and the economic, social, and cultural impacts of AI. Papers on key applications, highlighting methods, time schedules, person-months needed, and other relevant material are welcome.