From the Hitchin section to opers through nonabelian Hodge

IF 1.3 1区 数学 Q1 MATHEMATICS
Olivia Dumitrescu, Laura Fredrickson, Georgios Kydonakis, R. Mazzeo, M. Mulase, A. Neitzke
{"title":"From the Hitchin section to opers through nonabelian Hodge","authors":"Olivia Dumitrescu, Laura Fredrickson, Georgios Kydonakis, R. Mazzeo, M. Mulase, A. Neitzke","doi":"10.4310/JDG/1612975016","DOIUrl":null,"url":null,"abstract":"For a complex simple simply connected Lie group $G$, and a compact Riemann surface $C$, we consider two sorts of families of flat $G$-connections over $C$. Each family is determined by a point $\\mathbf{u}$ of the base of Hitchin’s integrable system for $(G,C)$. One family $\\nabla_{\\hbar ,\\mathbf{u}}$ consists of $G$-opers, and depends on $\\hbar \\in \\mathbb{C}^\\times$. The other family $\\nabla_{R, \\zeta,\\mathbf{u}}$ is built from solutions of Hitchin’s equations, and depends on $\\zeta \\in \\mathbb{C}^\\times , R \\in \\mathbb{R}^+$. We show that in the scaling limit $R \\to 0, \\zeta = \\hbar R$, we have $\\nabla_{R,\\zeta,\\mathbf{u}} \\to \\nabla_{\\hbar,\\mathbf{u}}$. This establishes and generalizes a conjecture formulated by Gaiotto.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JDG/1612975016","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

For a complex simple simply connected Lie group $G$, and a compact Riemann surface $C$, we consider two sorts of families of flat $G$-connections over $C$. Each family is determined by a point $\mathbf{u}$ of the base of Hitchin’s integrable system for $(G,C)$. One family $\nabla_{\hbar ,\mathbf{u}}$ consists of $G$-opers, and depends on $\hbar \in \mathbb{C}^\times$. The other family $\nabla_{R, \zeta,\mathbf{u}}$ is built from solutions of Hitchin’s equations, and depends on $\zeta \in \mathbb{C}^\times , R \in \mathbb{R}^+$. We show that in the scaling limit $R \to 0, \zeta = \hbar R$, we have $\nabla_{R,\zeta,\mathbf{u}} \to \nabla_{\hbar,\mathbf{u}}$. This establishes and generalizes a conjecture formulated by Gaiotto.
从希钦部分到非贝利式霍奇的歌剧
对于复单单连通李群$G$和紧致黎曼曲面$C$,我们考虑了两类在$C$上的平面$G$-连通族。每个族是由Hitchin可积系统的基对$(G,C)$的点$\mathbf{u}$确定的。一个家族$\nabla_{\hbar,\mathbf{u}}$由$G$-运算器组成,并依赖于$\hbar\in\mathbb{C}^\times$。另一个族$\nabla_{R,\zeta,\mathbf{u}}$是由Hitchin方程的解建立的,并且依赖于$\zeta \in\mathbb{C}^\times,R\in\math bb{R}^+$。我们证明,在缩放极限$R\到0,\zeta=\hbarR$中,我们有$\nabla_{R,\zeta,\mathbf{u}}\到\nabla_{\hbar,\mathbf{u}}$。这建立并推广了盖奥托提出的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信