Symmetrical 2-extensions of the 3-dimensional grid. I

Q3 Mathematics
K. Kostousov
{"title":"Symmetrical 2-extensions of the 3-dimensional grid. I","authors":"K. Kostousov","doi":"10.26493/2590-9770.1353.C0E","DOIUrl":null,"url":null,"abstract":"For a positive integer $d$, a connected graph $\\Gamma$ is a symmetrical 2-extension of the $d$-dimensional grid $\\Lambda^d$ if there exists a vertex-tran\\-sitive group $G$ of automorphisms of $\\Gamma$ and its imprimitivity system $\\sigma$ with blocks of order 2 such that there exists an isomorphism $\\varphi$ of the quotient graph $\\Gamma/\\sigma$ onto $\\Lambda^d$. The tuple $(\\Gamma, G, \\sigma, \\varphi)$ with specified components is called a realization of the symmetrical 2-extension $\\Gamma$ of the grid $\\Lambda^{d}$. Two realizations $(\\Gamma_1, G_1,$ $\\sigma_1, \\varphi_1)$ and $(\\Gamma_2, G_2, \\sigma_2, \\varphi_2)$ are called equivalent if there exists an isomorphism of the graph $\\Gamma_1$ onto $\\Gamma_2$ which maps $\\sigma_1$ onto $\\sigma_2$. V. Trofimov proved that, up to equivalence, there are only finitely many realizations of symmetrical $2$-extensions of $\\Lambda^{d}$ for each positive integer $d$. E. Konovalchik and K. Kostousov found all, up to equivalence, realizations of symmetrical 2-extensions of the grid $\\Lambda^2$. In this work we found all, up to equivalence, realizations $(\\Gamma, G, \\sigma, \\varphi)$ of symmetrical 2-extensions of the grid $\\Lambda^3$ for which only the trivial automorphism of $\\Gamma$ preserves all blocks of $\\sigma$ (we prove that there are 5573 such realizations, and that among corresponding graphs $\\Gamma$ there are 5350 pairwise non-isomorphic).","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1353.C0E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

For a positive integer $d$, a connected graph $\Gamma$ is a symmetrical 2-extension of the $d$-dimensional grid $\Lambda^d$ if there exists a vertex-tran\-sitive group $G$ of automorphisms of $\Gamma$ and its imprimitivity system $\sigma$ with blocks of order 2 such that there exists an isomorphism $\varphi$ of the quotient graph $\Gamma/\sigma$ onto $\Lambda^d$. The tuple $(\Gamma, G, \sigma, \varphi)$ with specified components is called a realization of the symmetrical 2-extension $\Gamma$ of the grid $\Lambda^{d}$. Two realizations $(\Gamma_1, G_1,$ $\sigma_1, \varphi_1)$ and $(\Gamma_2, G_2, \sigma_2, \varphi_2)$ are called equivalent if there exists an isomorphism of the graph $\Gamma_1$ onto $\Gamma_2$ which maps $\sigma_1$ onto $\sigma_2$. V. Trofimov proved that, up to equivalence, there are only finitely many realizations of symmetrical $2$-extensions of $\Lambda^{d}$ for each positive integer $d$. E. Konovalchik and K. Kostousov found all, up to equivalence, realizations of symmetrical 2-extensions of the grid $\Lambda^2$. In this work we found all, up to equivalence, realizations $(\Gamma, G, \sigma, \varphi)$ of symmetrical 2-extensions of the grid $\Lambda^3$ for which only the trivial automorphism of $\Gamma$ preserves all blocks of $\sigma$ (we prove that there are 5573 such realizations, and that among corresponding graphs $\Gamma$ there are 5350 pairwise non-isomorphic).
三维网格的对称2扩展。我
对于正整数$d$,连通图$\Gamma$是$d$维网格$\Lambda^d$的对称2-扩张,如果存在$\Gamma的自同构的顶点转移群$G$及其具有2阶块的监禁系统$\sigma$,使得商图$\Gamma/\sigma$在$\Lambda ^d$上存在同构$\varphi$。具有指定组件的元组$(\Gamma,G,\sigma,\varphi)$被称为网格$\Lambda^{d}$的对称2-扩展$\Gamma$的实现。两个实现$(\Gamma_1,G_1,$$\sigma_1,\varphi_1)$和$(\Gamma_2,G_2,\sigma_2,\varphi_2)$被称为等价的,如果图$\Gamma_1$到$\Gamma_2$上存在同构,该同构将$\sigma\u1$映射到$\sigmon_2$上。V.Trofimov证明,直到等价,对于每个正整数$d$,对称$2$-$\Lambda^{d}$的扩展只有有限多个实现。E.Konovalchik和K.Kostousov发现了网格$\Lambda^2的对称2-扩展的所有等价实现。在这项工作中,我们发现了网格$\Lambda^3$的对称2-扩展的所有等价实现$(\Gamma,G,\sigma,\varphi)$,其中只有$\Gamma$的平凡自同构保留了$\sigma$的所有块(我们证明了有5573个这样的实现,并且在相应的图$\Gamma中有5350个成对非同构)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Art of Discrete and Applied Mathematics
Art of Discrete and Applied Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.90
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信