Geet Lahoti, Jialei Chen, Xiaowei Yue, Hao Yan, C. Ranjan, Zhenjiang Qian, Chuck Zhang, Ben Wang
{"title":"Image decomposition-based sparse extreme pixel-level feature detection model with application to medical images","authors":"Geet Lahoti, Jialei Chen, Xiaowei Yue, Hao Yan, C. Ranjan, Zhenjiang Qian, Chuck Zhang, Ben Wang","doi":"10.1080/24725579.2021.1910599","DOIUrl":null,"url":null,"abstract":"Abstract Pixel-level feature detection from images is an essential but challenging task encountered in domains such as detecting defects in manufacturing systems and detecting tumors in medical imaging. Often, the real image contains multiple feature types. The types with higher pixel intensities are termed as positive (extreme) features and the ones with lower pixel intensities as negative (extreme) features. For example, when planning a medical treatment, it is important to identify, (a) calcification (a pathological feature which can result in a post-surgical complications) as positive features, and (b) soft tissues (organ morphology, knowledge of which can support pre-surgical planning) as negative features, from a preoperative computed tomography image of the human heart. However, this is not an easy task because (a) conventional segmentation techniques require manual intervention and post-processing, and (b) existing automatic approaches do not distinguish positive features from negative. In this work, we propose a novel, automatic image decomposition-based sparse extreme pixel-level feature detection model to decompose an image into mean and extreme features. To estimate model parameters, a high-dimensional least squares regression with regularization and constraints is utilized. An efficient algorithm based on the alternating direction method of multipliers and the proximal gradient method is developed to solve the large-scale optimization problem. The effectiveness of the proposed model is demonstrated using synthetic tests and a real-world case study, where the model exhibits superior performance over existing methods.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"11 1","pages":"338 - 354"},"PeriodicalIF":1.5000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24725579.2021.1910599","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2021.1910599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Pixel-level feature detection from images is an essential but challenging task encountered in domains such as detecting defects in manufacturing systems and detecting tumors in medical imaging. Often, the real image contains multiple feature types. The types with higher pixel intensities are termed as positive (extreme) features and the ones with lower pixel intensities as negative (extreme) features. For example, when planning a medical treatment, it is important to identify, (a) calcification (a pathological feature which can result in a post-surgical complications) as positive features, and (b) soft tissues (organ morphology, knowledge of which can support pre-surgical planning) as negative features, from a preoperative computed tomography image of the human heart. However, this is not an easy task because (a) conventional segmentation techniques require manual intervention and post-processing, and (b) existing automatic approaches do not distinguish positive features from negative. In this work, we propose a novel, automatic image decomposition-based sparse extreme pixel-level feature detection model to decompose an image into mean and extreme features. To estimate model parameters, a high-dimensional least squares regression with regularization and constraints is utilized. An efficient algorithm based on the alternating direction method of multipliers and the proximal gradient method is developed to solve the large-scale optimization problem. The effectiveness of the proposed model is demonstrated using synthetic tests and a real-world case study, where the model exhibits superior performance over existing methods.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.